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Abstract—In today’s IoT infrastructures, increasingly newly
added computational resources at the edge of a network are
added to acquire faster response and increased privacy. Such edge
networks bring an opportunity for deploying edge application
services in proximity to IoT domains and the end-users. In this
paper, we consider the problem of utilizing various computational
resources established by multiple heterogeneous edge devices
in dynamic edge networks. A new lightweight decentralized
mechanism (i.e., configurator) is required to monitor an edge
infrastructure to enable deploying, orchestrating, and monitoring
edge applications at the edge. In this setting, one critical task
is to determine the node where the configurator should be
placed (deployed) and run (executed) at the edge. In this paper,
we propose an efficient approach that solves the configurator’s
placement problem on the most suited edge device in a given
dynamic edge network. Our approach supports the system coping
with the dynamicity and uncertainty of the environment and
adapts based on the configurator’s service quality. We discuss
the architecture, processes of the approach, and the simulations
we conducted to validate its feasibility.

Index Terms—Edge Computing, Internet of Things, Decentral-
ized, Resource Management

I. INTRODUCTION

The emergence of Edge computing has introduced edge
devices as an intermediary entity between applications and
the Internet of Things (IoT) deployments, providing data or
control facilities to the participating IoT devices. The Edge
computing paradigm enables to shift processing from the cloud
to the edge devices located at the logical extremes of a network
- close to the user [1]. Accordingly, these intermediate devices
take responsibility for processing data promising to satisfy the
stringent requirements prevalent in IoT systems, including high
availability, performance, and privacy [2]. However, edge de-
vices are usually considered resource-constrained with limited
resources, referring to their different computational capabil-
ities, including storage or processing facilities. For instance,
providing a service for image processing or deploying edge ap-
plications (i.e., IoT applications) on a single edge device poses
many limitations and a set of challenges in terms of processing
capabilities, storage, and communication bandwidth. To this
end, edge devices do not exist in isolation and must be able to
collaborate with other edge devices. Thereby, interaction with
other edge devices enables extending the scope of available
resources and satisfying the computational requirements of
real-time edge applications at the edge of the network.

To overcome these shortcomings, edge devices found nearby
can form an edge-to-edge network, respectively, an edge
overlay network. Edge-to-edge collaboration provides many
benefits. First, edge devices can exchange information about
available resources within their scope in a peer-to-peer (P2P)
manner. For example, several edge devices deployed in a
smart neighborhood will share their functionality descriptions
based on their privacy preferences. Thereby, each edge device
will be able to utilize available resources at the edge of the
network [3]. Second, multiple edge devices provide a seamless
opportunity to enable deploying edge applications at the edge.
For example, an edge application divided into multiple services
can be mapped in the edge network where participating
nodes may run a particular service and satisfy application
requirements [4]. Thereby, forming such edge networks enable
relieving complex processings by distributing application ser-
vices among available edges. However, such edge networks are
heterogeneous and very volatile environments. This introduces
new challenges where edge devices may require to migrate ap-
plication services to other edge devices to fulfill continuously
changing application demands. Hence, deploying applications
in such heterogeneous infrastructures require novel techniques
for resource management at edge.

A common approach for resource allocation in edge infras-
tructures is to assign services to the available edge devices
by considering several factors such as processing capability,
bandwidth, or energy. Such techniques often employ central-
ized architecture where a static edge device is a master device
that acts as a gateway, monitors resources, and runs scheduling
algorithms for generating deployment strategies. Similarly,
several approaches have been proposed to enable application
placement in edge networks [5], [6]. However, many research
papers determine the master device statically. They do not
address issues when the Quality of Service (QoS) between
the master device and the other client nodes is degraded due
to the high utilization or high end-to-end latency. In contrast
to the mentioned works, a distributed approach [7] inspired
by the functionality of an auction house has been proposed
to enable IoT application deployment at the edge. However,
the proposed solution faces latency issues, and it considers a
limited number of nodes in the topology.

In practice, statically placing a set of functionalities (e.g.,
planning, controlling, or monitoring resources) on a single de-



vice may be feasible in small and non-dynamic edge networks.
However, in dynamic and large-scale edge networks, such an
assumption is rarely accurate and may result in inefficient
resource utilization and network overheads. This often occurs
due to the dynamicity of edge networks, which may change
continuously over time. Such changes are caused by unex-
pected node joining/leaving, high utilization, or node and link
failures. Thus, to ensure efficient deployment and orchestration
of edge applications (e.g., elasticity and migrating services),
we require real-time controlling and monitoring of the edge in-
frastructures (i.e., node hardware values). Hence, to overcome
these challenges, we need a decentralized mechanism that acts
as a resource manager and a control mechanism closer to
the edge. Such a decentralized mechanism enables deploying
and orchestrating applications and monitoring infrastructure at
dynamic edge networks. From now onwards, we refer to this
mechanism as the configurator (explained in Section II-C).

In this setting, a critical task is to determine the node
where the configurator should be deployed and executed at
the edge. Therefore, in this paper, we propose an efficient
decentralized approach that identifies the most suitable node
to run the configurator in dynamic edge networks (Section II-
B). Our approach consists of an architecture and processes
that enable the placement of the configurator. The proposed
method allows the execution of the configurator on the edge
device with the highest computing performance, the lowest
workload, and the best overall bandwidth. An edge device that
executes the configurator mechanism becomes a configurator
node. Notably, when the configurator node is overwhelmed,
a custom event is triggered to find another suitable node that
can handle the current workload. To validate the feasibility and
scalability of the approach, we have implemented a prototype
and simulate the configurator’s placement at the edge.

The rest of the paper is structured as follows. Section II
gives an overview of our Edge-Cloud ecosystem, the con-
figurator, and motivation. Related work is considered in
Section III. Section IV describes the architecture modeling,
resource utilization modeling, and the makespan to run and
transfer the configurator at the edge. Section V describes
in detail the proposed algorithms in charge of determining
configurator in manager mode in the edge network. Section VI
provides the simulation results to evaluate the proposed solu-
tion. Finally, Section VII concludes the paper and outlines
future work directions.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce the background of the
Edge-Cloud ecosystem and the edge neighborhood. Then, we
give a short overview of the configurator’s aim in edge net-
works. Finally, we present our motivation scenario. Note that
throughout the paper, we may use interchangeable notations
for edge networks such as edge neighborhoods.

A. Edge-Cloud Ecosystem

We consider our proposed edge ecosystem [3], [8], which
is composed of a three-tier layer architecture: edge, fog, and
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Fig. 1. An overview of the Edge-Cloud ecosystem.

cloud, respectively. The proposed ecosystem aims to enable
collaboration between edge devices, information, and people
to create an IoT platform that supports the development of
new edge applications. Figure 1 shows three types of collabo-
ration in our proposed ecosystem: edge-to-edge, edge-to-fog,
and cloud-to-fog collaboration. The edge layer represents the
internal environment where several edge devices connect and
form an edge neighborhood. In this layer, each such device
contains various resources that could aid in building different
edge applications.

The network’s upper layer represents the external envi-
ronment where several fog nodes are connected, offering
computation and storage resources for edge neighborhoods.
In the edge-to-fog scenario, an edge device that executes the
configurator enables the communication between the internal
network (edge neighborhood) and external network (fog net-
work). Whenever there are not enough resources at the edge
neighborhood, the configurator node may request to use the
fog network’s external resources.

The third layer of the network represents the platform’s
environment, and edge applications can be downloaded and
deployed in edge neighborhoods. Additionally, the third layer
serves as an environment where heavy tasks that cannot be
computed at the edge or fog are moved to the cloud for further
processing. In this paper, we aim to solve the challenges
introduced at the proposed ecosystem’s edge layer.

B. Edge Neighborhood

A typical Edge computing system includes heterogeneous,
resource-constrained, and geographically distributed comput-



ing resources [9]. Several approaches have been proposed
aiming to build and organize computation nodes in the edge
network [10]. To meet our desired objectives, we consider a
similar organization type of the edge network proposed in [11].
In the mentioned paper, nodes are organized in clusters, and
the network can easily scale. Moreover, the maximum cluster
sizes are configurable and the number of clusters to which one
node may belong. We assume that each cluster has a limited
number of nodes in our system, and each node belongs to
only one cluster. We limit the number of nodes in clusters in
order to handle the complexity introduced when monitoring
nodes in the edge infrastructure [12]. It is worth noting that
to orchestrate edge applications at the edge, we require to
monitor hardware resources at different edge nodes or their
end-to-end latency between them. In Figure 2, we present an
example of an edge neighborhood comprised of twenty nodes
organized in three clusters.

Cluster 3
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Fig. 2. An example of an edge neighborhood comprised of twenty nodes
organized in three clusters.

In Figure 2, each cluster have a leader node (e.g., node A,
node B, node C). We assume that leaders act as superpeers
[13], and each of them stores contact details (i.e., IP address,
etc.) of the other leaders. Leaders may store some other
information regarding the other nodes in the neighborhood.
Similarly, edge nodes that belong to the same cluster store
information for each other and know their cluster leader and
the configurator node at any time. In Section V-A, we explain
in detail the process of finding the cluster leader. Note that
we treat an edge neighborhood as already given, and to build
the edge network is out of the scope of this paper. Our
focus is on determining the most suitable node to place and
execute the configurator on heterogeneous and dynamic edge
infrastructures. Therefore, issues related to the edge network,
such as joining/leaving nodes, organizing nodes in clusters,
and operational aspects are orthogonal to our approach. In
future work, similar to the method mentioned above, we
plan to build the edge neighborhood based on the Kademlia
Protocol [14].

C. The Configurator

To enable application deployment in a decentralized manner,
each edge device will require information regarding an edge
infrastructure’s current condition. However, it is computation-
ally demanding to monitor resources from each edge device
throughout the network. Therefore, in this paper, we provide a
solution to determine which node must take the responsibility
to act as a resource manager as well as a control mech-
anism for controlling deployment aspects and orchestrating
applications at the edge. We refer to this mechanism as the
configurator, and the method proposed in this paper is one
of the main components of the configurator. The configurator
is a decentralized mechanism which is a lightweight software
application aiming to enable deploying, orchestrating edge ap-
plications (i.e., elasticity, migration), and monitoring resources
at the edge. To achieve such objectives in a decentralized
manner, we conclude that each edge device needs to have a set
of functionalities embedded through a configurator. Therefore,
we define two operation modes of the configurator: i) manager
mode (i.e., resource manager and control mechanism) and ii)
edge mode (i.e., worker node).

In an edge neighborhood, there is one and only one config-
urator running in the manager mode. The configurator node
instantiates a local edge agent on each cluster leader nodes
to enable monitoring resources and orchestrating applications
locally. Such a local agent provides information to the config-
urator node regarding the available resources on its cluster.
Once the user requests installing an edge application (i.e.,
downloaded from the cloud), the configurator node determines
which cluster meets the application requirements and deploys
it in a specific group (if the cluster is not specified beforehand).
Additionally, the configurator helps to orchestrate applications
between clusters, fog, and cloud whenever they cannot scale
locally due to the limited resources. Nonetheless, it remains
the future work to provide a complete solution for the config-
urator and a full solution stack for edge applications that are
dynamically distributed, elastic, resilient, and run natively in
the Edge–Cloud continuum.

D. Motivation

We envision a smart city scenario where city administrators
can build and customize edge networks by deploying various
services. In this scenario, the edge infrastructure is structured
based on the districts in the city. Each district represents an
edge neighborhood where thousand of computation nodes are
deployed as well as sensors, actuators, and mobile devices.
An edge neighborhood can be composed of multiple groups
of nodes (i.e., each group may represent a neighborhood in the
district). This brings an opportunity to customize environments
depending on the available resources, e.g., if there are sensors
for gathering air quality data in a particular neighborhood, a
specific monitoring service can be deployed. For example, in a
particular neighborhood, residents may complain about noise
pollution. Thereby, city administrators may add new sensors
connected to edge devices for gathering real-time data about
the noise pollution in the affected area. Afterward, an edge



application can be deployed closer as possible to the data
source enabling monitoring noise pollution, processing data,
and notifying the relevant authorities if noise exceeds the upper
bound limit [15]. A situation may arise when the application
QoS requirements are violated (e.g., node failures, overloaded
devices, high end-to-end latency, etc.). Thus, the application
services need to be scaled/moved in other nodes. Notably,
controlling and monitoring mechanisms in such environments
remains a challenging task to implement. These issues arise
due to excessive peculiarities of the edge network (i.e.,
heterogeneity, unavailability, and limited resources). Thus,
it is evident that we require proper techniques that enable
orchestrating, monitoring applications, and monitoring edge
infrastructure in a decentralized and dynamic manner. Our
proposed approach aims to shift such functionalities closer to
the edge and dynamically placing them in the most suitable
nodes.

III. RELATED WORK

Current literature in Edge computing recognizes and briefly
discusses types of communication [16]. Notably, P2P ap-
proaches have shown great potential to handle edge infras-
tructures in a scalable manner [17]. Therefore, a lot of re-
search has been conducted in this context, resulting in many
approaches that aim at organizing edge nodes using different
communication types [18]. In contrast to the mentioned papers,
Yi et al. [5] proposes Latency-Aware Video Edge Analytics
(LAVEA) system and discuss factors that impact the feasibility
of realizing practical Edge computing systems.

According to [10], the communication type of a platform
affects the functionality of the final applications deployed
at the edge infrastructure. In networks organized in P2P, it
is assumed that participating nodes are equal in terms of
their computation capabilities. In such an organization type,
resource heterogeneity is not taken into account. Notably,
such environments have attracted many research papers to
propose various fault-tolerance systems (e.g., [19]). In contrast
to the proposed approaches, hierarchical communication type
organizes nodes in layers according to the node resource
capabilities [20]. In this type of organization, the node in
the highest level of the hierarchy is responsible for the
network’s global coordination. Similarly, in [21], fog nodes
in the network are organized hierarchically. However, such
approaches determine a coordinator statically, which resides in
the cloud. In contrast, we propose a solution that automatically
determines configurator placement in dynamic edge networks.

Resource allocation and management have been widely
studied both in cloud and fog computing [16]. In Fog com-
puting many factors have been considered including time
(e.g., computation [22], communication time [23]), cost (e.g.,
networking [24]), deployment [25], resource coordination [26],
or execution [27], which have been found to play important
roles in resource and service provisioning. Skarlat et al. [28]
proposes a framework called FogFrame, which aims to deploy
and execute various workloads in the fog infrastructure. The

proposed approach organizes nodes in the network with the
cloud residing in the hierarchy’s highest level.

Notably, none of these approaches considers the dynamic
nature of edge networks. Scheduler and monitoring compo-
nents are placed statically in the highest level of the hierarchy
(i.e., cloud or fog devices) that are assumed to be powerful
devices. However, when such nodes are fog devices, they may
suffer from being overwhelmed and fail to process further
deployment requests or fail to monitor edge infrastructure.
Moreover, the QoS between the master and the other nodes
may be degraded due to the high utilization or high end-to-
end latency. As a result, our proposed solution aims to shift
orchestrate and monitor functionalities closer to the edge and
dynamically place them in the most suitable nodes. Such a
solution makes edge networks autonomous environments and
less dependent on centralized nodes that are located far away.

IV. ARCHITECTURE AND RESOURCE UTILIZATION
MODELING

This section discusses architecture modeling, resource uti-
lization modeling, and the makespan to run and transfer
the configurator at the edge. Our assumption is that edge
devices are single-core processors. We consider only single-
core processors avoiding the need for local mapping of multi-
core processors in edge devices. This is attributed to the
different workloads that each core may have in time.

A. Architecture Modelling

We model our neighborhood as a graph G = {V, E},
where V is a set of vertices that represent clusters, and E
is a set of edges that captures the physical link between the
vertices. We assume that the graph G is connected, i.e., there is
always at least one path for every pair of vertices that connects
them. Each vertex νi ∈ V is a cluster (see Section II-B). A
cluster νi is composed of a set of nodes Γi with individual
functionalities. Each node γj ∈ Γi is assumed to be a single-
core processor that has workload denoted with wj and a
computation factor denoted with cfj . A computation factor
cf determines how fast the received data can be processed on
the device (i.e., represent the core’s clock speed).

We assume that the nodes in a cluster are connected in
a P2P manner. We define a function < Wi, cfi >= P(νi)
which finds the leader ρi in the cluster νi that has the lowest
workload. The function returns the Wi and cfi of the cluster
leader (see Section V-A). The workload w of the device is
the value that shows how much the CPU core is utilized. We
use the Worst-Case Execution Time (WCET) to determine the
maximum time it takes to execute a given piece of code (i.e.,
task) on a given device with cfi. For instance, consider a task
with the WCET of 2 ms and runs on a device with a core with
the cf1 = 0.8. The WCET of the task would be 1.6 ms. Thus,
devices with a higher cf execute tasks faster rather than those
with lower ones.

Each edge ε ∈ E is a full-duplex physical link and associated
with a bandwidth βε. We also define a function < R, αi,j >=



O(νi, νj) which returns a path R between the clusters νi
and νj which has the maximum total bandwidth αi,j .

We model the configurator as a single task with a known
WCET, which can be scaled for a given core with the
associated computation factor. We use T for the WCET of
the configurator, and the size of the configurator is denoted
with L. An example of conceptual architecture is depicted in
Figure 3, and details of the nodes are described in Table I.
Notice, the bandwidth values in Table I are given in Mbps.

TABLE I
CONCEPTUAL ARCHITECTURE SHOWN IN FIGURE 3

Cluster (V) Comp. factor cfi Available Bandwidth (αi,j)

ν1 1.1 α1,2 =22.67 α1,3 =32
ν2 1.0 α2,1 =22.67 α2,3 =1000
ν3 1.7 α3,1 =32 α3,2 =1000
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Fig. 3. Conceptual architecture.

The conceptual architecture has three clusters (i.e., cluster
leader) that are connected with three links. Each link is
associated with a bandwidth value, as presented in Table I. The
values for the bandwidth of links αi,j are randomly assigned
(see in Table II). This assumption can be replaced with a
function relying on Assolo [29], which enables collecting
bandwidth probes.

TABLE II
THE QOS PROFILES OF COMMUNICATION LINKS [30]

Profile Latency Download Upload

4G 53 ms 22.67 Mbps 16.97 Mbps
VDSL 60 ms 60 Mbps 6 Mbps
WLAN 15 ms 32 Mbps 32 Mbps
Fiber 5 ms 1000 Mbps 1000 Mbps

B. Modelling Resource Utilization

Edge networks are loosely coupled distributed systems
and heterogeneous environments. Resource utilization of edge

devices may change rapidly. Each edge device is equipped with
limited physical resources such as computational processing,
memory, and network bandwidth. The current resource uti-
lization of edge devices (i.e., CPU, RAM, and storage) can be
calculated with various approaches, as presented in research
works [31], [32]. Such hardware information can be collected
using Hyperic Sigar [33]. To meet our desired objectives,
we adopt a similar approach based on the fuzzy theory [32],
which represents the current utilization of resources through
utilization scores (see in Table III).

TABLE III
NODES IN THE ARCHITECTURE SHOWN IN FIG.3

Leader Current workload W Utilization Score Uw

ρ1 90% 0.90
ρ2 52% 0.52
ρ3 18% 0.18

We use a similar membership function to represent the
utilization of resources defined as follows:
• Uw - The fuzzy subset and node CPU utilization score is

represented as:
– Light : (0.1 < Uw < 0.49),
– Medium : (0.49 < Uw < 0.89),
– Heavy : (0.9 < Uw < 1.0).

• Uβ - The fuzzy subset for bandwidth utilization is calcu-
lated as a percentage used from the total available band-
width. Similar to the CPU utilization score, bandwidth
utilization is represented as light, medium, and heavy.

The scores Uw and Uβ are randomly generated and used in
a function which determines when to trigger an event to start
the process for placing configurator in a most suitable node
(Section V).

C. Makespan

The WCET of the configurator is calculated for a base
CPU, which has the computation factor cfj . If the configurator
is submitted to the node (edge device) γj with the cfj , the
execution time CWj can be calculated as in the given equation
(1).

CWj =
T
cfj

(1)

We consider Ctνi,j to be the commutation time for transfer-
ring the configurator of size L from νi to νj which is calculated
with given equation (2)

Ctνi,j =
L
αi,j

(2)

The time required to execute the configurator and to transfer
data between the edge devices is the makespan measured as
in the formula (3).

C = CWj + Ctνi,j (3)



D. Cost Function

We define a cost function for choosing the most suited
cluster in the neighborhood. The cost function gets the
time required to execute the configurator CWi on the cluster
leader νi, the time required to transfer the configurator from
the current cluster νj to the cluster νi denoted with Ctνi,j , and
the workload of the cluster leader νi denoted with Wi. The
most suited cluster in the neighborhood has the minimum cost.
The coefficients c1, c2 and c3 are determined at design time.

φ = c1 × CWj + c2 × Ctνi,j + c3 ×Wi. (4)

V. THE APPROACH

In this section, we present two main processes of the
proposed approach: i) the process of finding the leader node
in a cluster (i.e., we refer to as the Cluster Leader Algorithm),
and ii) the process of determining configurator placement (i.e.,
we refer as the Mapper Algorithm). The proposed method
represents one of the main components of the configurator.
Afterward, we discuss the scalability of the configurator.
Finally, we present an example of the approach through a
demonstration.

A. The Cluster Leader Algorithm

The cluster leader algorithm chooses a cluster leader, which
is assumed to have a limited number of nodes. The first
participant node of the cluster is automatically elected as a
leader node. There are three ways on how the algorithm can be
triggered: i) by the configurator node, ii) the cluster leader, and
iii) by the cluster nodes. An election is triggered by a cluster
leader when it suffers constant high processor utilization and
wants to transfer leadership to another node. The algorithm
uses control messages to check all the nodes in the cluster
and find the minimum workload. In case the leader node fails,
each node can start an election on its own at any time. The
initiating node sends a control message with a predefined value
for T to all nodes that will participate in the election; typically,
those are all nodes associated with the local node’s cluster.
Otherwise, when the configurator node triggers the algorithm,
it sends the current value T and finds the most suitable node
to execute the configurator in the manager mode. The reason
behind bounding the number of nodes in clusters has been
already explained in Section II-B.

The cluster leader algorithm, as presented in Algorithm 1,
runs on each cluster node separately. Essentially, the algorithm
gets the current workload W (line 2), the computation factor
of the core cf (line 3), and then updates the workload of the
core as if it runs the configurator (line 4). Besides, a unique
random signature (i.e., SHA-1 hash) is used to be broadcast
along with the prediction of workload to all the nodes in the
cluster (lines 5-6). Such a random number called Signature,
helps to make the process and transmitted messages unique.
We refer to the transmitted message as a control message.

The cluster leader algorithm determines whether the leader
is itself or not in the limited time (e.g., 100 ms), and it
is defined as a Deadline (line 8). The deadline value is

Algorithm 1: Cluster Leader.
Input : νi
Output: Wi, cfi

1 t← 0
2 W ← GetcoreWorkload()
3 cf ← Getcorecf()
4 W ←W + T

cf

5 Signature← Random()
6 Broadcast To All(W, Signature)
7 Solution Found← False
8 while t < Deadline OR !Solution Found do
9 I ← Receive Message()

10 if getWorkload(I) <W then
11 Solution Found← True
12 else if I =W then
13 M ← Received Signature(I)
14 if M < Signature then
15 Solution Found← True
16 end
17 end
18 end
19 if !Solution Found then
20 return W, cf
21 end

specified at system design time. If the leader is not found
in the given period, then the previous leader continues to
lead the cluster unless if the leader has failed. Nevertheless,
when a message from another node is received I (line 9),
then the algorithm compares the workload of the received
message with the workload of itself W (line 10). Once the
received message has a better workload than the node itself,
the algorithm stops since a better node is known in the cluster.
In case of equal workload, the signature helps choose the
leader node as given in (line 14). The cluster leader node
is the one on which the algorithm is still running since it
has the lowest workload. Afterward, the algorithm returns Wi

and cfi of it as an output. It is worth noting that we consider
energy-powered edge devices in the edge neighborhood. For
environments with energy-restricted devices, the number of
nodes in clusters should be kept lower, or a more lightweight
solution can be considered to elect a cluster leader (e.g., the
Bully Algorithm [34]).

B. The Mapper Algorithm

We design the mapper algorithm by considering the edge
device’s current workload, bandwidth, and the current configu-
rator workload. The algorithm finds the solution for executing
the configurator in the manager mode in the most suitable
node (see Algorithm 2). The problem we have is formulated
as follows. Essentially, we have given i) a network graph G , ii)
a configurator, iii) a function P for finding the cluster leader,
and iv) a function O which returns a path R with maximum
bandwidth between two clusters.



Algorithm 2: Mapper.
Input : G, O, R
Output: νbest

1 νthis ← getCurrentCluster()
2 νbest ← null
3 φbest ← 0
4 for each νi ∈ E and νi 6= νthis do
5 <Wi, cfi >= P(νi)
6 CWνi = T

cfi

7 < R, αi,this >= O(νi, νthis)
8 Ctνthis,i

= L
αi,this

9 Ci = Ctνthis,i
+ CWνi +Wi

10 if νbestis Null then
11 φbest ← φi
12 νbest ← νi
13 else if φbest ≥ φi then
14 φbest ← φi
15 νbest ← νi
16 end
17 end
18 Set(νthis, EdgeMode)
19 Set(νbest,ManagerMode)

A triggered event causes the overloading of the configurator
node (i.e., the processor is overloaded). Such an event triggers
our algorithms’ execution, which seeks to determine the most
suitable cluster νbest where the configurator should be mapped
to and be executed on in the manager mode.

The most suitable cluster νbest should be determined such
that i) there is always one and only one configurator running
in the manager mode on the network, ii) the most suitable
cluster νbest has a good workload and the minimum execution
time Tej , and iii) the most suitable cluster νbest has a good
available bandwidth Cβ and minimum transferring time for the
configurator Cei,j . The leader of the most suitable cluster νbest,
denoting with ρbest is captured with P(νbest).

When the mapper algorithm is triggered, the configurator
checks all clusters in the neighborhood (line 17) for a node
that can host the configurator. The algorithm calls the func-
tion P , which executes Algorithm 1 for getting the cluster
leader (line 5). In case the cluster leader cannot respond, it
starts a new election and finds the leader of the cluster (see
Section V-A). The cluster leader’s computation factor is used
to calculate the configurator’s execution time on it (line 6).
The function O is called to find the path from the cluster that
currently runs the configurator to the cluster being checked
(line 7). The total available bandwidth of the path αi,this is
used to calculate the configurator’s transfer time (line 8). The
total transfer time and execution time of the configurator are
calculated in line 9. Afterward, the algorithm finds the most
suitable cluster, which has the minimum execution and transfer
time for the configurator, as well as the maximum available
bandwidth and minimum workload (line 13). Eventually, if the

determined cluster is not the existing one, the configurator will
be set to the ManagerMode.

The process is activated each time when the configurator
node in the manager mode is overwhelmed. It’s worth noting
that the CPU of an edge device may fluctuate up and down
due to the various workloads. We consider a threshold to
avoid such a situation. The default threshold is configured
to alert when CPU utilization exceeds 90% for more than
30 seconds. Therefore, to identify to what degree an edge
device is overloaded, we define rules in the fuzzy database.
The rules are given as follows: whenever the CPU hits heavy
utilization (see Table III) or heavy bandwidth utilization, the
mapper algorithm is triggered to find a new edge device that
can run configurator with the current workload.

C. Scalability

We propose the notion of the cluster to make the mapper
algorithm scalable. The proposed method breaks the process
of finding the most suitable node in the network into: i) finding
the leader of the cluster, and ii) finding the most suitable
cluster. The mapper algorithm can map the configurator to
the best cluster, respectively, to the cluster leader in the
finite time, as the network becomes bigger. As shown in
Section IV-D, the most suitable cluster is the one that has
relatively good available bandwidth that can be used to transfer
the configurator too. In Section VI, we show that the time
required to transfer and activate the configurator on the most
suitable cluster even when the number of nodes and clusters
increases is in limited time.

D. Demonstration of the Mapper Algorithm

In this part, we present an example of our proposed ap-
proach; respectively, we demonstrate the mapper algorithm
(Algorithm 2). In our example, we assumed three clusters
create a neighborhood. The cluster ν1 is hosting the config-
urator, i.e., configurator in the manager mode, respectively,
configurator node ρbest. At the same time, the other clusters
are running the configurator in edge mode.e. Let us assume
that the current workload of the configurator node ρbest of the
cluster ν1 is 34%, the available bandwidth is 84 Mbps, and
the computation factor is 1.1.

TABLE IV
CONFIGURATOR IN THE OVERLOADED NODE ρbest IN CLUSTER νbest

Leader (ρ) Workload (W) Configurator Cost (φbest)

ν1(ρbest) 94% Manager 0.921
ν2(ρ2) 53% Edge 0.641
ν3(ρ3) 34% Edge 0.457

Initially, an event makes the cluster ν1 overloaded, respec-
tively, the workload on the configurator node ρbest exceeds
94% of processor utilization as given in Table IV. After
the CPU remains utilized for more than 30 seconds, another
event is triggered, alerting the processor’s heavy usage. Such
an event triggers the mapper algorithm on the configurator



node ρbest in the cluster ν1. The algorithm iterates over all the
network clusters, namely the cluster ν2 and ν3. The algorithm
finds its leader for each cluster, using the function P , its
workload, and its bandwidth. For the cluster ν2, the leader
is the node ρ2, and its workload is 53% and has 90 Mbps of
available bandwidth, with the computation factor of 1. For the
cluster ν3, the output would be the leader node ν3 with the
workload of 34%, the available bandwidth of 45 Mbps, and
the computation factor of 1.05.

We assume that the current size of the configurator is 10
Mbits, the current utilization is 10%, and coefficients for the
cost function are equal to 1 (see eq. 4 in Section IV-D). The
algorithm chooses the cluster ν3 with the lowest total cost of
0.457 compared to the cost of 0.641 for the cluster ν2. Finally,
the algorithm sets itself to the EdgeMode as well as it sets the
configurator running on the cluster ν3 to the ManagerMode.

VI. EVALUATION

In this section, we first introduce our evaluation setup envi-
ronment, prototype details, and limitations. Next, we experi-
mentally evaluate the effectiveness of the approach by running
multiple experiments and checking the mapper algorithm’s
behavior in different situations.

A. Setup, Prototype Details, and Limitations

For evaluating the proposed approach, we develop a pro-
totype that implements core functionalities to determine con-
figurator placement at the edge. The prototype is written in
MATLAB, and it is deployed on a laptop with a Core i7
CPU at 2.8 GHz and 16 GB of RAM. For the evaluation, we
run 100 experiments per number of clusters and show results
from various cases. These results are in terms of: i) analyzing
the scalability and time required to determine configurator
placement, ii) analyzing the overhead for transferring and
execution time of the configurator, and iii) analyzing the
overhead of bandwidth usage (Section VI-B).

The current version of the prototype shows the feasibility of
the proposed approach in determining the configurator place-
ment at the edge. However, some values such as measuring
bandwidth, hardware related metrics, and configurator data
size are randomly generated. Notably, such parameters are
not necessary for this simulation since our goal is to show
the feasibility and the scalability of the configurator without
causing overheads. The current version of the prototype does
not provide the configurator’s failure mechanism. In future
work, we plan to adopt a similar approach [19], where the
configurator data is stored in a distributed manner among the
edge nodes.

B. Experiments and Results

We evaluate our proposed method on five test cases which
have different sizes. The size of test cases progressively
increases and reaches 200 clusters that have at least 28000
nodes. For simplicity, in this work, we assume that the
maximum number of nodes in clusters is defined not to be
more than 250 nodes. Thus, for each experiment, we generate

a random number of nodes in the clusters. In the smallest
test case, we have 10 clusters with 1864 nodes, and in the
largest test case, we have 200 clusters with 28255 nodes.
The five test cases and their relative number of clusters,
including the number of nodes, are depicted in Figure 4. The
blue box shows the minimum number of nodes in a cluster,
the red box shows the average, and the green box shows
the maximum number of nodes generated randomly for 100
iterations. Figure 4 is an objective of the proposed approach,
as discussed in Section V-C, which advocates the scalability
of the configurator at the edge neighborhood.
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Fig. 4. The number of clusters and their nodes in five test cases. The test
cases have respectively 10, 25, 50, 100, 200 clusters, and for each test case,
we iterate the simulation 100 times.

Fig. 5. The WCET of the configurator executed on the most suitable cluster
leader in the neighborhood. The minimum and average WCETs are almost
the same for the five test cases, though the maximum differs, which implies
bandwidth’s impact on choosing the most suitable cluster.

We also evaluate the WCETs of the configurator executed on
the most suitable cluster leader. The result of the evaluation
is depicted in Figure 5. The results show that the proposed
algorithm has almost found the core that has the most suitable
computation resources in all test cases. The average WCET of
the configurator on the test cases are nearly the same and has
the value of 657 ms. However, the WCET of the configurator
reaches almost 1700 ms in test cases with 25 clusters and with



an average of 3153 nodes. Notably, the result shows also to
have the best cost function that imposes to have an excellent
available bandwidth.

In Figure 6, we show the maximum and minimum band-
width usage during all simulations in the edge neighborhood.
The maximum and minimum values vary depending on the
test case, though the results match the relevant results of
the WCETs. Evidently, these experiments’ results show that
adding more edge devices/clusters in the problem instance
does not increase the network and computation consumption.
This is in line with the recent literature review [35], which
suggests that the edge-based systems need to operate at large-
scale networks.

Fig. 6. The total bandwidth usage in five test cases in the edge neighborhood.
The average values are almost the same.

Fig. 7. The time required to activate and transfer configurator data on the
hosting node. The average values are almost the same.

We evaluate the proposed algorithm in terms of the acti-
vation time of the configurator. The results are depicted in
Figure 7. The activation time is the required time for the
configurator to be transferred to the most suitable cluster leader
and executed on it as a manager. We measure this duration by
having the neighborhood’s topology, routing, and the relative
bandwidth of the links and the leader’s computation factor.
The results show that the activation time is bounded and
has almost the same value in all test cases. Even when the

number of clusters and the nodes is progressively increased,
the activation time is bounded. Notably, the activation time
varies marginally in all test cases and iterations, implying the
configurator’s scalability.

VII. CONCLUSION AND FUTURE WORK

Compute and storage resources at the edge of the net-
work are used to bridge the gap between the Cloud and
IoT domains to facilitate low-latency and highly resilient
applications. However, the broad range of IoT application
requirements concerning latency and QoS, combined with the
heterogeneous and dynamic nature of edge networks, make
it particularly challenging to orchestrate, deploy, and operate
such applications. To overcome these challenges, we introduce
a decentralized mechanism called configurator. In this setting,
one critical task is to determine configurator placement at
the edge. Therefore, in this paper, we propose an efficient
decentralized approach that determines the most suited edge
device to execute the configurator in a given dynamic edge
network. We have implemented a prototype and evaluate
the proposed approach’s feasibility by simulating configurator
placement at the edge.

We claim that the configurator at the edge paves the way
for utilizing available resources, leading to accomplish the
promised high quality and low-latency services. Despite the
promising results, this paper is only a small step towards the
configurator’s operationalization, aiming to achieve efficient
resource utilization in edge networks. Regarding future work,
we first plan to build the edge neighborhood based on the
Kademlia. It remains to provide a complete solution for the
configurator and a full solution stack for edge applications that
are dynamically distributed, elastic, resilient, and run natively
in the Edge–Cloud continuum. Finally, some assumptions
made regarding workloads and the bandwidth will be replaced
with the mentioned approaches in future work.
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