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Abstract

Legacy machine learning solutions collect user data from

data sources and place computation tasks in the Cloud. Such

solutions eat communication capacity and compromise pri-

vacy with possible sensitive user data leakage. These con-

cerns are resolved by Fog computing that integrates compu-

tation and communication in Fog nodes at the edge of the

network enabling and pushing intelligence closer to the ma-

chines and devices. However, pushing computational tasks

to the edge of the network requires high-end Fog nodes

with powerful computation resources. This paper proposes

a method whose computation tasks are decomposed and

distributed among all the available resources. The more

resource-demanding computation is placed in the Cloud,

and the remainder is mapped to the Fog nodes using migra-

tion mechanisms in Fog computing platforms. Our presented

method makes use of all available resources in a Fog com-

puting platform while protecting user privacy. Furthermore,

the proposed method optimizes the network traffic such that

the high-critical applications running on the Fog nodes are

not negatively impacted. We have implemented the (deep)

neural networks - using our proposed method and evaluated

the method on MNIST and CIFAR100 as the data source for

the test cases. The results show advantages of our proposed

method comparing to other methods, i.e., Cloud comput-

ing and Federated Learning, with better data protection and

resource utilization.
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1 Introduction

Big data has been expanded in all areas affecting business and

research models [3, 18, 33]. These new models range from

data-oriented economies that supply and facilitate data to

the areas where data analytics help with improving produc-

tivity and reliability [37]. A challenge to realize this vision is

the need of collecting a huge amount of data into data center

facilities that are equipped with different communication

solutions. However, the power of Big Data will be revealed

with the use of Machine Learning (ML) [36] which requires

powerful computation resources to perform [51]. Such com-

putation and communication capabilities are integrated in

Cloud Computing (CC) which has gained significant popu-

larity and success in the past decade [25].

With CC providing cost-efficient, powerful computation

and storage capabilities [25], Big data and ML have been

spread in different application areas [25]. Companies such as

Google, Microsoft, and Amazon have been providing differ-

ent solutions for collecting data from producers, e.g., sensors,

to their Cloud facilities and for data processing to analyze the

data. Collecting all raw data from producers to data centers

compromises data privacy, is more vulnerable to security

attacks [6], and is forbidden according to General Data Pro-

tection Regulation (GDPR) in Europe. Data leakage has been

agreed as one of the major challenges in the Cloud [34]. It

is also massive and often repetitive that eats network band-

width. Nevertheless, CC having non-deterministic behavior

does not fit the applications that are latency-sensitive. An

example of such area is the industrial applications that are

high-critical, i.e., they have stringent timing requirements.

An architectural means to solve such issues is the Fog

Computing (FC) that is defined as a “system-level architec-

ture that distributes resources and services of computing,

storage, control and networking anywhere along the contin-

uum from Cloud to Things” [9]. An interchangeable term is

Edge Computing (EC) [41] with the difference that FC em-

phasizes more about the infrastructures and EC focuses more

on the computation part. A fog computing platform (FCP)

brings computation and storage resources closer to the edge

of the network and it is composed of several interconnected

fog nodes (FNs). The vicinity property of FC outcasts CC

by lower latency, local computation and high bandwidth

for clients [50]. As shown in Figure 1, FNs are placed at the

edge of the network and in the proximity of data sources.
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Figure 1. Overview of Fog Computing Platform

FC is literally pushing computation, data storage, data ana-

lytics, and service away from centralized Cloud to FNs. FC

has been envisioned to implement different application ar-

eas such as industrial Internet of Things [28], self-driving

vehicles [7], and smart healthcare [32] and so on [22] in the

near future. Several types of FNs from powerful high-end

FNs to low-end FNs with limited resources have been pro-

posed by researchers [5, 29] and have been developed by

companies [26, 47].

FC enables performing intelligence at the edge of the net-

work using the integrated computation resources and data

storage of FNs. It also avoids the raw data transmission be-

tween FNs and the Cloud, avoiding privacy leakage and

bandwidth overuse. To this end, a favorable computation

framework - Federated Learning (FL) [16] is proposed by

Google where they suggest exchange gradients between FNs

and the Cloud to jointly train a global model that may cap-

ture the information of the whole environment. However,

FL may not be suitable in applications where FNs have less

computation budget.

Unlike CC that places all the computation on Cloud and

FL that leaves all the computation on the FNs, we would like

to propose a new approach in which the computation is split

among FNs and Cloud. We consider Deep Learning (DL) as

the model, and the most costly computational task is model

training and divides it into two steps: forward and backward.

We feed inputs to the model during forward step and use

the chain rule to compute gradients in backward step. As

pointed out by [13], in most cases, backward computation is

much more expensive than forward computation. Therefore,

we assign a part of forward computation to the FN, and the

remainder together with the backward computation to the

Cloud.

Our main contributions are as follows. Wemotivate the de-

mand of addressing the computation decomposition between

FCP and server, for applications that require more computa-

tional resources that could not be met by edge devices. We

propose an approach that decomposes the training process

and tests the proposed approach on neural network mod-

els since it often requires more computational expense than

......ra
w

da
ta

Input
Layer

Hidden
Layer

Output
Layer

Figure 2.Multilayer Perception

other ML models [10]. We compare our proposed methods

with other CC and plain FL and evaluate the performance of

our proposed methods on several test cases. We compare the

model performance, communication cost and also simulate

it on OMNET++.

The remainder of this paper is structured as follows. We

present CC-based and FL in Section 2. Afterward, Section 3

presents the details of our proposed method. We evaluate

our proposed approach on test cases MNIST and CIFAR100.

The related work is presented in Section 5 and Section 6

concludes the paper.

2 Background and Related Concepts

Deep Learning (DL) [20] has gained significant success and

beat the state-of-the-art in many fields such as object detec-

tion and recognition, speech recognition, medical diagno-

sis [46], and many other domains, e.g., genomics [30]. The

presence of a neural network avoids the non-trivial feature

extraction work, which was required in conventional ML

methods. Instead, the model takes raw data as the input, and

the model automatically carries out the feature extraction

work. There are several types of neural network architec-

tures such as Multilayer Perceptron (MLP), Convolutional

Neural Network (CNN), Recurrent Neural Network (RNN),

and Long short-term memory (LSTM).

MLP [35] was first invented and intended to model how

the human brain processed visual data and learned to rec-

ognize objects. It is a set of layers stacking together with

both linear and non-linear transformations in an interleav-

ing way, sees Figure 2. CNN [21] is probably the most widely

used network since it largely reduced the number of model

parameters comparing with MLP. Instead of one unit con-

necting with all units in the previous layer, it only connects

to the receptive field where convolution kernel is applied,

see Figure 3. The convolution kernel is shared in the convolu-

tion layer, which made CNN shift-invariant. Namely, certain

features can be detected regardless of their location in the

input image. Moreover, RNN [38] and LSTM [12] are often

used for speech recognition or any sequential data. In this

work we use CNN and MLP in our proposed implementation

method.
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Figure 3. Convolutional Neural Network

2.1 Cloud-based Deep Learning

In CC-based DL, the FNs collect data from the sensors con-

nected to them and transfer the raw data to the Could where

DL model is implemented as computation tasks for training.

Figure 4 shows the demonstration of the CC-based DL which

consists of 𝑝 FNs.
Each FN receives the input data produced by the connected

sensors. We denote the input data as 𝑥 ∈ R𝑑 . The FN inte-

grates 𝐵 data instances to form one batch, thus each batch
transmits 𝐵×𝑑 . Typically the batch size is much smaller than
the input data dimension 𝑑 � 𝐵. Since all the 𝑝 FNs transmit
data to the Cloud, the size of total data transmitted in each

iteration is 𝑝 × 𝐵 × 𝑑 . We only consider one iteration of data
transmission for the comparison with all the other meth-

ods. The communication cost is fixed in CC regardless of

the ML models since only training data is considered. How-

ever, in some applications, the data storage is not permanent

on Cloud, and the same data is transmitted multiple times,

which is another downside of CC. For instance, using GPU in

Colab [4] requires transmitting data whenever it reconnects.

2.2 Federated Deep Learning

Federated Learning (FL) was first proposed by Google as

a solution for large-scale mobile network training [16]. It

suggests distributing the computational workload among

nodes connected via the network, whereas the server in

the network maintains globally the shared parameters of

Cloud
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Figure 4. Cloud Computing-based ML method
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Figure 5. Federated Deep Learning at round 𝑡 .

DL, which are in the form of dense or sparse vectors and

matrices. There is a similar work in the literature named as

“parameter server” [23], which focuses on the system design

part and FL caught more attention in ML community.

In FL diagram, the FNs or data sensor perform most of

the computation, and the Cloud aggregates and shares the

parameters, shown in Figure 5. Each FN implements local

training using its own data (from its connected sensor) and

sends the gradient information to the Cloud. On the other

hand, the Cloud aggregates all the gradient information from

FNs and sends the aggregated gradient information back to

them for the next round of local training. The overall view

of the FL method is introduced in Algorithm 1.

At each round, every FN receives 𝐵 instances of raw data
(each instance has size 𝑑) from sensors connected to it and
takes the raw data as the input to perform the local compu-

tation. Presumably, the data denoted as (𝑋,𝑌 ) is generated
from the empirical data distribution D̂. ℓ𝑗 is defined as the
local loss function in FN 𝑗 , 𝑣𝑡𝑗 is the Jacobian matrix (contain-
ing all the partial derivatives) of FN 𝑗 at round 𝑡 , and 𝜂 is the
learning rate. Cloud instead performs the simple arithmetic

calculations that aggregate the model parameters from all

the active FNs.

Algorithm 1 Federated Learning

1: Input:𝑤0, 𝑋 , 𝑌
2: for t=1,...T do

3: =>workers:

4: for j=1,2,..,p do p devices (in Parallel)

5: 1) 𝑣𝑡𝑗 = ∇ℓ̂𝑗 (𝑓 (𝑋
𝑡
𝑗 ;𝑤

𝑡 ), 𝑌 𝑡
𝑗 )

6: with ((𝑋 𝑡
𝑗 = {𝑥𝑡

𝑗𝑘
}𝑘=1,..𝐵, 𝑌

𝑡
𝑗 = {𝑦𝑡

𝑗𝑘
}𝑘=1,...,𝐵) ∼ D̂

7: 2) share 𝑣𝑡𝑗 with server

8: end

9: =>server:
10: 𝑣𝑡 = 1

𝑝

∑𝑝
𝑗=1 𝑣

𝑡
𝑗

11: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂 × 𝑣𝑡

12: share𝑤𝑡+1 with devices for next round

13: end

14: Return𝑤𝑇
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Figure 6. Fog Computing-based Decomposed Deep Train-

ing.

Leaving most computation on the local devices constrains

the range of applications that FL may be applicable. For

instance, it is not suitable for the scenario that the compu-

tational resources on device are insufficient to carry out all

the tasks. On the other hand, the available assets on Cloud

are not fully utilized neither, e.g., computation power and

storage.

Regarding to the communication cost, say we have a neu-

ral network 𝑓 with𝑚+𝑛 layers and |𝑣𝑡𝑗 | represents the number

of elements in Jacobian matrix 𝑣𝑡𝑗 . At each round 𝑡 , FNs and

the Cloud transmit data with total size of 2 × 𝑝 ×
∑𝑚+𝑛

𝑗 |𝑣𝑡𝑗 |

or 2 × 𝑝 ×
∑𝑚+𝑛

𝑗 |𝑤𝑡
𝑗 | for the two-way transmission (from

devices to server and from server to devices).

3 Solution

In this section, we present our method that decomposes

the computational tasks among the distributed FNs and the

Cloud. More specifically, the overall model is divided into

two parts: local model and remote model. The local model

is stored on FNs and Cloud, whereas the remote model is

only stored on Cloud. Note the Cloud also owns a copy of

the local model for the error propagation step. On the FNs

side, first, they collect data from sensors connected to them,

and the data is used as the input to the local models (named

as local computation). Local computation is one part of the

overall foreward step. Second, all FNs send the intermediate

results (output of local model) to the Cloud. On the Cloud

side, it first finishes the rest of the forward task on the remote

model and then implements the overall backward computa-

tion (error propagation) for training using the combo of the

local and remote models. The proposed method is illustrated

in Figure 6 where the local models and the remote model are

shown in red and navy blue circles, respectively.

An overview of our proposed method FCDDT is presented

in Algorithm 2 where two main functions FogCom and

CloudCom are introduced for all the computational tasks on

Algorithm 2 Fog Computing-based Decomposed Deep

Training (FCDDT)

1: Input:𝑋,𝑌, [𝑤1
local

,𝑤1remote], 𝜂
2: for t=1,...,T do

3: for j=1,...,p do p devices (in Parallel)

4: 𝑧𝑡𝑗 = FogCom(𝑋 𝑡
𝑗 ;𝑤

𝑡
local

) ⊲ Computation on fog

nodes (FNs)

5: with ((𝑋 𝑡
𝑗 = {𝑥𝑡

𝑗𝑘
}𝑘=1,..𝐵, 𝑌

𝑡
𝑗 = {𝑦𝑡

𝑗𝑘
}𝑘=1,...,𝐵) ∼ D̂ ⊲ 𝑗

indicates data on worker 𝑗

6: end

7: 𝑧𝑡 = [𝑧𝑡1, 𝑧
𝑡
2, .., 𝑧

𝑡
𝑝 ] ⊲ Cloud collects the outputs from FNs

8: 𝑦𝑡 = [𝑦𝑡1, 𝑦
𝑡
2, ..., 𝑦

𝑡
𝑝 ] ⊲ Cloud collects the labels from FNs

9: 𝑦𝑡 = CloudCom(𝑧𝑡 , 𝑦𝑡 , 𝜂) ⊲ Computation on Cloud

10: end

11: Return [𝑤𝑇
local

,𝑤𝑇
remote]

FNs and Cloud. At round 𝑡 , FogCom takes 𝑋 𝑡
𝑗 as the input

and returns the intermediate result 𝑧𝑡𝑗 where 𝑋
𝑡
𝑗 represents

the training data of FN 𝑗 at round 𝑡 . After the active FNs
shared the intermediate output and labels with the server,

the server implements CloudCom, which outputs the up-

dated parameters of the local model 𝑤𝑡+1
local
. This procedure

repeats𝑇 times and finally it returns the complete model pa-
rameterized [𝑤𝑇

local
,𝑤𝑇
remote]. The unbalanced computational

resources on FNs might delay the aggregation on Cloud.

However, the synchronization is not necessarily required, in

particular, when the number of FNs or batch size is big, see

Section 4 for the related observation.

We present the details of computation on Cloud (Cloud-

Com) in Algorithm 3. CloudCom takes all the outputs from

local computation and the labels at the round 𝑡 , and the
learning rate 𝜂 as the inputs. CloudCom first completes the
forward step computation using the remote model 𝑓remote,
and then implements the backward step computation and

shares the updated parameters of the local model with FNs.

Implementation: We assume that the remote process

(CloudCom) is implemented as an application on the Cloud

that is connected to the FCP. However, implementing the

local process (FogComp) requires a mechanism for applica-

tion deployment. Thus, we assume that FogComp is imple-

mented as dedicated applications for each FN, and they are

submitted to the FCP via the Cloud. Once submitted, the Fog

Controller FN, which is determined at runtime using mecha-

nisms such as [15], receives the submission request. Since

the Fog controller has knowledge of the available resources

on the FNs using the resource discovery algorithms such

as [8, 15, 27] at runtime, it can decide the placement of appli-

cations on the FNs using a decentralized resource allocation

technique [2, 43]. In the case of an FN leaving the FCP, Fog

controller is able to migrate application from the leaving FN

to a next available FN.
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Algorithm 3 CloudCom

1: Input: 𝑧𝑡 , 𝜂, 𝑦𝑡 ⊲ 𝑧𝑡 is the combination of all outputs from FNs,
𝜂 is the learning rate and 𝑦𝑡 is the labels at round t

2: 𝑦𝑡 = 𝑓remote (𝑧
𝑡 ;𝑤remote) ⊲ 𝑓remote is the remote model on

server, parameterized by𝑤𝑡
remote

3: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂 × ∇𝑤 ℓ̂ (𝑦
𝑡 , 𝑦𝑡 ) ⊲ ∇𝑤 ℓ̂ (𝑦

𝑡 , 𝑦𝑡 ) is gradients w.r.t.
all the parameters

4: Return𝑤𝑡+1
local

⊲ 𝑤𝑡+1
local

is one part of𝑤𝑡+1

Communication Expense: The network traffic in FCDDT

consists of exchanging messages that enable the decomposed

training. The message exchanging can be split into two parts:

(1) the messages uploading intermediate results and labels

to the Cloud at each round and (2) the messages download-

ing updated model parameters from the Cloud to the FNs.

Considering the 𝑝 number of FNs in the FCP that collects 𝐵
number of data instances to a data batch, and 𝑙𝑚 nodes sitting
in layer𝑚 with the assumption that it is a fully-connected
layer. Thus, the total size of uploading messages is equal to

𝑝 × 𝐵 × 𝑙𝑚 + 𝐵. Since 𝑝 × 𝐵 × 𝑙𝑚 � 𝐵, we can easily omit
𝐵. Similarly, the size of downloading messages is equal to
𝑝 ×

∑𝑚
𝑖 |𝑤𝑖 |.

4 Experiments and the Results

The structure of this section is as follows. We first describe

our test setup and the test cases we used for evaluation

in Section 4.1. We compare our proposed FCDDT method

with the related work in Section 4.2. Afterward, we evaluate

the accuracy of our proposed method on the test cases in

Section 4.3. Section 4.4 presents the OMNET++ simulation

and evaluation results on the traffic latency.

4.1 Test Cases and Setup

We implemented our method in Python and ran it on a Ti-

tan X GPU with Architecture Maxwell. The performance of

FCDDT is evaluated on test cases that are derived from two

sets of images: MNIST and CIFAR10. Each image in MNIST

has the size of 28× 28 pixels and represents gray-scale hand-

written digits. MNIST consists of 50K images for training

and 10K images for test that are grouped to 10 classes corre-

sponding to digits from zero to nine. Each image in CIFAR10

has the size of 3 × 32 × 32 pixels (i.e., images are RGB) and

represents an object of 10 classes such as airplanes, automo-

biles, etc. CIFAR10 consists of 50K images for training and

10K images for the test. FCDDT can implement different ML

methods, thus, we used a two-layer CNN, two-layer MLP for

MNIST, LeNet5, and VGG for CIFAR10. The introduction of

CNN and MLP are already presented in Section 2. LeNet5

[20] is a commonly used convolutional neural network, com-

posed of 5 convolutional layers and one dense layer (fully

connected). VGG was proposed by [42] and designed for

Table 1. Comparison of FCDDT with the related work

Feature FCDDT FL CC

Compute nodes FNs & Cloud FNs Cloud

Raw data exchange No No Yes

Comm. cost 𝑝 (𝐵𝑙𝑚 +
∑𝑚
𝑖 |𝑤𝑖 |) 2𝑝 (

∑𝑚+𝑛
𝑖 |𝑤𝑖 |) 𝑝𝐵𝑑

Implementation via Cloud on each FN via Cloud

large-scale images classification tasks. It uses the small ker-

nel with size 3× 3, and for more details, we refer the readers

to [42].

We also evaluated the effect of FCDDT on the network

traffic using simulation in OMNET++. The simulation is car-

ried out on 6 test cases with the increasing number of FNs in

the FCP. We assumed that the FNs in each test case exchange

both critical and ML-related messages. The critical message

exchanging between an FN and the Cloud is modeled as a

periodic request with the size of 1400 bytes and a periodic

reply with the size of 5000 bytes. The periods of the request

and reply messages are equal to 400 ms. Each FN exchanges

critical messages with two of its neighbors, which are simi-

larly modeled as periodic request and reply messages that

have periods are randomly chosen among 200, 300, and 400

ms and sizes equal to 1400 and 4000 bytes, respectively.

Moreover, the ML messages are also modeled as periodic

request and reply messages that have equal periodic to 1000

ms. The size of request messages is 1200 bytes and the size

of reply messages is equal to the data size in each method

with data from MNIST. We simulate the network traffic for

a duration of hyperperiod, i.e., the least common divisor of

all message periods, and evaluate FCDDT for its effect on

the mean bandwidth usage and mean imposed delay on the

critical messages.

4.2 Comparison with the related work

We compare the features of FCDDT with the related work

in Table 1. The related work consists of FL [16] and CC [25]

solutions. The first feature in the table represents the com-

putation platform where each solution runs. As shown in

the table, FCDDT is the only solution that uses all the re-

sources in the FCP and distributes computation among the

processing nodes. Note here in FL, the Cloud only carries

out easy the arithmetic calculation, we ignore it in Table 1.

Regarding privacy, both FL and FCDDT avoid sending raw

data and only transmit the model parameters or other in-

termediate results. However, as shown in the table, FCDDT

is more efficient comparing with FL in communication cost

since it uses less bandwidth 𝐵𝑙𝑚 +
∑𝑚

𝑖 |𝑤𝑖 | < 2
∑𝑚+𝑛

𝑖 |𝑤𝑖 |.

Note we can further save bandwidth by allocating a really

small local model to FNs (in terms of depth and width of

neural network) such that
∑𝑚

𝑖 |𝑤𝑖 | is relatively small. CC

requires least bandwidth without considering re-connection

problem that we discussed in Section 2.1, but it compromises

the sensitive data privacy.
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Figure 7. batch size comparison

CC solution is suitable for the implementation on large

scale FCPs since the training model applications are only

implemented to run on the Cloud, thus it is scalable concern-

ing the network size. Our proposed solution FCDDT uses

a similar approach by employing application deployment

mechanisms that automatically place applications on the

FNs, which makes the solution scalable as well. However, FL

requires all nodes to be programmed individually, unless a

specific mechanism is introduced for a large scale FCP.

4.3 Performance evaluation

The accuracy evaluations of FCDDT on datasets MNIST and

CIFAR10 using different ML methods are shown in Table 2

and Table 3 accordingly. As the results show, our method

FCDDT either has identical performance or mildly degraded

comparing with CC and FL. Note that we assume local train-

ing happened on FNs in FL framework for only one iteration

and we repeat the experiments for 5 times to evaluate the

standard deviation.

Moreover, we explore the impact of batch size on accu-

racy using FCDDT. We test it on CIFAR10 in Figure 7 where

VGG16 is applied as the model. As we mentioned before,

the synchronization between FNs is not necessarily required.

Here we introduce the straggler rate 𝛼 to simulate the sce-
nario where the Cloud aggregates the transmission from top

1 − 𝛼 FNs. Figure 8 shows that the different straggler rates
have various impacts on the model performance when batch

size is different. The four colors represent batch size equal

Figure 8. Straggler rate comparison (CIFAR10). Percentage

sign is omitted. 𝑏 : 𝑥 represents the batch size.

Table 2.MNIST performance

Name CC FL FCDDT

MLP (Two layers) 0.9 ± 0.007 0.9 ± 0.01 0.89 ± 0.003
CNN (Two layers) 0.96 ± 0.0014 0.96 ± 0.003 0.96 ± 0.002

to 100, 200, 500, 1K accordingly. As we can see, the accuracy

drops drastically when batch size is 100, and the straggler

rate decreases to 0.8. However, it has no significant influence
on the performance when the batch is equal to 500 or 1K even

with four FNs. We suggest using the big batch size in the

environment where computational resources are not evenly

distributed among FNs, and the straggler phenomenon is

likely to happen.

4.4 Network traffic evaluation

We simulate the network traffic for FCDDT and the related

work for the 8 test cases in Table 4. It includes the mean end-

to-end delay for all messages in 𝜇s and the mean bandwidth
usage for the traffic. More specifically, the simulated results

show that FCDDT is able to reach 16% less bandwidth usage

comparing to FL and 19% less than CC. The saved bandwidth

usage of FCDDT contributes to decreasing the average end-

to-end delay to 59 𝜇s, which is 8 𝜇s and 18 𝜇s less than FL
and CC, respectively.

A key observation is that in the case where no ML ser-

vice is running on the FCP, i.e., ignoring the ML messages,

the average bandwidth usage is 20% and the average end-to-

end delay is 55 𝜇s. Taking this as the baseline, our method
FCDDT introduces only 1% and 4 𝜇s for the average band-
width usage and the average end-to-end delay in addition,

with ML service.

5 Related Work

It’s challenging to train the machine learning model on one

device with the exponential growth of data and connected

devices that generate data. Two types of parallel technologies

are often used: data parallelism and model parallelism. Data

parallelism is commonly used where each processor (GPU)

owns one complete copy of the model and processes one

subset of the data. It is effective in some applications when

data is naturally distributed across multiple devices, and

processing data in a parallel way saves the cost of data trans-

mission to one centralized machine. However, it requires

frequent communications between processors for the syn-

chronization of models trained separately. It was considered

as the main drawback of data parallelism [24, 39, 44]. It [45]

Table 3. CIFAR10 performance

Name CC FL FCDDT

LeNet5 0.445 ± 0.01 0.45 ± 0.05 0.45 ± 0.003
VGG16 0.93 ± 0.074 0.92 ± 0.13 0.885 ± 0.297
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Table 4. Simulation results on six test cases

# No. of FCDDT FL CC
FNs E2E delay (𝜇s) bandwidth usage E2E delay (𝜇s) bandwidth usage E2E delay (𝜇s) bandwidth usage

1 4 49 18% 52 21% 57 22%

2 7 52 19% 56 23% 65 24%

3 10 56 21% 63 25% 75 26%

4 12 62 22% 69 25% 83 27%

5 15 66 24% 77 28% 89 29%

6 18 71 25% 84 29% 96 31%

demonstrates how to translate high-level data parallel to

GPU programs. The authors from [40] experimentally study

the effect of increasing batch size during training, measured

by the number of steps required to reach a preset error, and

how does this relationship changes with respect to different

training methods, network architecture, and dataset.

Another category is model parallelism. The increasing size

of neural networks (layers and parameters) can no surprise

result in higher accuracy. However, there is a limit to the

maximum model size fit in a single processor (GPU). Thus,

the model is partitioned into several parts, and each part

is processed on one GPU. Each GPU is responsible for its

weight updates accordingly. The main drawback of model

parallelism techniques is the dependence between proces-

sors, namely, the processor has to wait for the previous pro-

cessor to finish its work and take the output of the previous

processor as the input. They [11] introduce a paralleled com-

putation by pipelining execution across multiple machines,

which show 95% for large deep neural networks relative

to data-parallel training. Instead of dividing the model into

consecutive layers, it partitions the model horizontally [17].

They design a model that is horizontally symmetric, so it

can be separated into two parts and train independently on

two processors, and combine at the end of each backward.

A similar work [49] study the offloaded task from edge

devices to server where they divided the framework into

three layers: edge devices, edge servers, and server. They

only considered the case when local training on edge devices

occurred only once before the communication with the edge

server. Another work [48] additionally proposed to apply

Reinforcement Learning to automatically offload the compu-

tational task between server and edge devices. Again, they

did not consider multiple epochs on edge devices. They [1]

empirically study the deep neural network-powered apps

in the Android market and identify some optimization tech-

niques, such as model pruning and quantization. The other

works like [14, 19] focus on the system design on offloading

the neural network computation from edge devices to the

server.

Our method is a mixture of data and model parallelism.

Different from the works mentioned before, we focus more

on the ML side and particularly propose a decomposition

approach under the federated framework. The approach is

flexible to applications with the varying placement of com-

putational and storage resources.

6 Conclusion and future work

Fog Computing as an enabler for Industry 4.0 which inte-

grates mixed-criticality applications on a shared computing

platform envision to run data analysis at the edge of the net-

work. This capability prevents sending all data to the Cloud,

thus prevents the user data leakage and eating communica-

tion capacity. Although Fog Computing Platforms employ

separation mechanisms to protect critical applications, the

resource-demanding data analysis computation may debili-

tate Fog nodes from providing critical applications sufficient

resources.

We propose a decomposed deep training solution that dis-

tributes its workload among the Fog nodes and the Cloud. It

is generally applicable to any neural network architecture,

but to save the bandwidth, we suggest dividing the neural

network at the layer producing the output with a small di-

mension, e.g., a fully-connected layer with few nodes. With

such a solution, less resource-demanding computation is

assigned to the Fog nodes, and the remainder of computa-

tion is assigned to the Cloud, which exchanges messages

for performing data analytics. To further enhance the data

security, we refer to another work [31], which studies the

lower bound of model structure to avoid the possible input

reconstruction. The simulated network traffic in OMNET++

shows that our method is more suitable for mixed-critical

systems than the literature. In our future work, we will con-

sider the optimal decomposition of the computation that will

use the maximum available resources on the Fog nodes.

The limitation of our method is that only one iteration

is allowed to implement locally before the communication

with the server. We believe that it can be addressed by a

hierarchical FL architecture where the sub-network is in-

troduced and composed of a set of devices and a FN. The

sub-network may approximate the local Stochastic Gradient

Descent (SGD) with the assumption that the devices and FN

are connected via an intranet. Or we can explore another

way of model decomposition.
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