
P
os
te
d
on

31
M
ay

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.2
32
12
44
2.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

ELISE: A Reinforcement Learning Framework to Optimize the

Sloftframe Size of the TSCH Protocol in IoT Networks

Fabian Fernando Jurado Lasso 1, Mohammadreza Barzegaran 2, Jesus Fabian Jurado 2,
and Xenofon Fafoutis 2

1Technical University of Denmark
2Affiliation not available

October 31, 2023

Abstract

The Industrial Internet of Things (IIoT) is shaping the next generation of cyber-physical systems to improve the future industry

for smart cities. It has created novel and essential applications that require specific network performance to enhance the quality

of services. Since network performance requirements are application-oriented, it is of paramount importance to provide tailored

solutions that seamlessly manage the network resources and orchestrate the network to satisfy user requirements. In this

article, we propose ELISE, a Reinforcement Learning (RL) framework to optimize the slotframe size of the Time Slotted

Channel Hopping (TSCH) protocol in IIoT networks while considering the user requirements. We primarily address the

problem of designing a framework that self-adapts to the optimal slotframe length that best suits the user’s requirements. The

framework takes care of all functionalities involved in the correct functioning of the network, while the RL agent instructs

the framework with a set of actions to determine the optimal slotframe size each time the user requirements change. We

evaluate the performance of ELISE through extensive analysis based on simulations and experimental evaluations on a testbed

to demonstrate the efficiency of the proposed approach in adapting network resources at runtime to satisfy user requirements.

1

IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017 1

ELISE: A Reinforcement Learning Framework to
Optimize the Sloftframe Size of the TSCH

Protocol in IoT Networks
F. Fernando Jurado-Lasso, Member, IEEE , Mohammadreza Barzegaran, Member, IEEE , J. F. Jurado, and

Xenofon Fafoutis, Senior Member, IEEE

Abstract— The Industrial Internet of Things (IIoT) is shaping the
next generation of cyber-physical systems to improve the future
industry for smart cities. It has created novel and essential ap-
plications that require specific network performance to enhance
the quality of services. Since network performance requirements
are application-oriented, it is of paramount importance to provide
tailored solutions that seamlessly manage the network resources
and orchestrate the network to satisfy user requirements. In this
article, we propose ELISE, a Reinforcement Learning (RL) frame-
work to optimize the slotframe size of the Time Slotted Channel
Hopping (TSCH) protocol in IIoT networks while considering the
user requirements. We primarily address the problem of designing
a framework that self-adapts to the optimal slotframe length that best suits the user’s requirements. The framework
takes care of all functionalities involved in the correct functioning of the network, while the RL agent instructs the
framework with a set of actions to determine the optimal slotframe size each time the user requirements change. We
evaluate the performance of ELISE through extensive analysis based on simulations and experimental evaluations on a
testbed to demonstrate the efficiency of the proposed approach in adapting network resources at runtime to satisfy user
requirements.

Index Terms— Smart cities, Smart resource management, Time Slotted Channel Hopping (TSCH), Reinforcement Learning
(RL), Industrial Internet of Things (IIoT).

I. INTRODUCTION

THE world has witnessed a shift from traditional commu-
nication networks that interconnect computers through

well-established standards to a pervasive network of networks
that provides internet connectivity even to the smallest phys-
ical objects. This evolved communication network, known as
the IoT, is the enabling technology for Industry 4.0, where
operational technology meets information technology. These

Manuscript received October 1, 2022; revised xx, xx. This work was
partly supported by DAIS. DAIS (https://dais-project.eu/) has received
funding from the ECSEL Joint Undertaking (JU) under grant agreement
No 101007273. The JU receives support from the European Union’s
Horizon 2020 research and innovation programme and Sweden, Spain,
Portugal, Belgium, Germany, Slovenia, Czech Republic, Netherlands,
Denmark, Norway, and Turkey. The document reflects only the authors’
view, and the Commission is not responsible for any use that may be
made of the information it contains. Danish participants are supported
by Innovation Fund Denmark under grant agreement No. 0228-00004A.

F. Fernando Jurado-Lasso and Xenofon Fafoutis are with the Embed-
ded Systems Engineering section, DTU Compute, Technical University
of Denmark, 2800 Lyngby, Denmark (e-mail: ffjla@dtu.dk; xefa@dtu.dk).

Mohammadreza Barzegaran is with the Center for Pervasive Commu-
nication and Computing, University of California, Irvine, CA 92697, USA
(e-mail: barzegm1@uci.edu).

J. F. Jurado is with the Department of Basic Science, Faculty of En-
gineering and Administration, Universidad Nacional de Colombia Sede
Palmira, Palmira 763531, Colombia (e-mail: jfjurado@unal.edu.co).

cutting-edge technologies have created novel and essential
applications for industrial operations such as smart cities,
intelligent energy management, transportation, homes, waste
management, etc.

At the hardware level, such applications are realized through
electronic devices embedded with intelligent computing, com-
munication systems, sensors, and actuators. The architecture
of these devices, along with the need to make them flexible,
cost-effective, and able to be embedded into even the small-
est things, has led to the development of Wireless Sensor
Network (WSN) technology. WSNs have been deployed in
a wide variety of industrial applications [1]–[3]. The overall
architecture, characteristics, and applications impose design
constraints on their size and cost, resulting in strict resource
limitations, including computation capabilities, energy, mem-
ory, and communication bandwidth. The resources of WSNs
come at a significant cost; therefore, they need to be managed
intelligently to ensure optimal performance for the longest
possible period of time.

One of the most popular performance metrics for WSNs
is energy consumption. A pioneering approach in reducing
energy consumption is presented in [4], which proposes a
cluster-based routing approach to extend the network lifetime.
Building on this work, various research studies [5] propose

2 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

new algorithms and architectures to find the best topology
and routing strategies that minimize energy expenditure when
transmitting packets from source to destination.

Alternatively, other approaches focus on minimizing the
energy consumption of wireless sensor nodes by regularly
turning off their radio chipsets [6]. However, the imple-
mentation of such sleeping periods requires strict scheduling
algorithms to establish the transmitting and receiving times be-
tween neighboring nodes. Deterministic Media Access Control
(MAC) protocols have been introduced to address these limita-
tions. Scheduling algorithms orchestrate the transmissions and
receptions for all sensor nodes in the WSN. Transmissions are
scheduled in a way that allows non-interfering transmissions
to occur simultaneously without colliding with each other.
Moreover, these protocols take advantage of frequency diver-
sity in their radios to increase network capacity and reduce
interference from external devices.

The IEEE 802.15.4 - TSCH standard defines the set of
functionalities required to run link scheduling for low-rate
WSNs [7], [8]. The scheduling algorithm, often referred to
as the scheduler, generates cyclic schedules (referred to as
slotframes) that determine the physical channel to use for
transmission at each time point.

The schedule of the TSCH network directly affects its per-
formance. Redundant links improve link reliability and latency,
but also increase power consumption as receiving nodes wake
up their radios more frequently. The slotframe size represents
the length of the schedule and indicates how often the schedule
repeats. A smaller slotframe size improves network reliability
and latency as the links repeat more frequently, but at the cost
of higher power consumption.

Conversely, a larger slotframe size minimizes network
power consumption but compromises network reliability and
latency. Therefore, the scheduling algorithm must consider
the user requirements to tailor a schedule that meets the
application’s needs. Additionally, the scheduling should be
flexible, adaptable, and reliable to accommodate dynamic
changes in the environment and user requirements.

A. Contributions

In this article, we propose an open-source reinforcement
learning framework named ELISE1 to optimize the slotframe
size of TSCH networks, considering dynamic changes in
user requirements. We address the problem of designing a
framework that self-adapts the slotframe size of the TSCH
schedule to the optimal length that best suits a set of user
requirements. ELISE guides the network through a set of
actions to determine the optimal slotframe size whenever user
requirements change.

The main contributions of this article are as follows:
1) We develop a novel open-source framework that enables

centralized network resource management and run-time
reconfiguration of WSNs.

2) We develop a reinforcement learning solution that uti-
lizes the ELISE framework to self-adapt the network’s

1https://github.com/fdojurado/SDWSN-controller.git

reliability, power efficiency, and delay based on user
requirements.

3) We design a reward model based on a multi-objective
cost function that facilitates the selection of the best
network configuration to meet user requirements.

4) We evaluate the performance of ELISE through exten-
sive analysis using simulations and experimental evalu-
ations on a testbed.

The remainder of this article is organized as follows. Sec-
tion II provides a technical background on key concepts in the
framework and an overview of related research. Section III
provides a detailed description of the framework components.
Section IV explains the design of the reinforcement learning
framework. Section V presents the experimental layout, the
approximation model of the environment to expedite the
learning process of the reinforcement learning framework,
the training process, and the experimental evaluation. Finally,
Section VI presents the main conclusions and potential areas
for future research.

II. BACKGROUND AND RELATED WORK

In this section, we briefly introduce the network model and
the core technologies used throughout this paper: TSCH and
Software-Defined Wireless Sensor Networks (SDWSNs). We
then discuss research works that have used these technologies
to improve network performance.

A. Network model

We model the network as a directed graph G(V, E), where
V is the set of nodes, and E is the set of physical links.
A node νi ∈ V is the sender and/or receiver of network
traffic. The number of network nodes is denoted with |V|.
A link ϵi,j ∈ E is a full-duplex link that connects the two
nodes νi and νj . since the links are bi-directional, the link ϵi,j
is equivalent to ϵj,i. The number of network links is denoted
with |E|.

The network traffic is modeled with the concept of streams
(also called flows) that represents a data packet from one
sender (talker) to one or multiple receivers (listeners). We
denote the set of network streams as T . A stream τi ∈ T is
characterized by the talker and the receiver. In ELISE, we limit
the number of listeners for each stream to one, i.e., unicast
communication. However, the model can be easily extended
to support multicast streams by adding each sender-receiver
pair as a stream.

The path for the stream τi is determined as an ordered
sequence of directed links and denoted with ri ∈ R. Besides,
|ri| represents the number of links in the path. For example,
the stream τ1 ∈ T sending from the node ν1 to the node ν3
has the route r1 = {ϵ1,2, ϵ2,5, ϵ5,3}. Using the set of routes R,
we define the function H : νi −→ N which takes the node νi
as the input and returns the node rank, i.e., the number of links
originated for the node νi, as the output. Fig. 1 presents an
example of a TSCH schedule for six-node network topology.

JURADO-LASSO et al.: ELISE: A RL FRAMEWORK TO OPTIMIZE THE SLOFTFRAME SIZE OF THE TSCH PROTOCOL IN IOT NETWORKS 3

Fig. 1. An example of a TSCH schedule for a six-nodes topology.

B. SDWSNs

We model the software layer of the network using the
concepts form Software-Defined Networking (SDN) and Wire-
less Sensor Network (WSN) that we call SDWSN. This
approach has been devised as a potential pathway to solve
the management and run-time reconfiguration complexities
currently found in state-of-art WSNs. It adopts concepts from
Software-Defined Networking (SDN). This new WSN archi-
tecture divides the control from the data functions, allowing
the logically centralized controller to become reprogrammable
and the WSN to be abstracted for applications and network
services [9]. SDN separates the network into three network
planes: application, control, and data plane. The application
plane hosts applications and programs that send information
about the network requirements to the SDN controller. In
contrast, the control plane is a logically centralized entity that
processes application requirements and sets up the network
infrastructure resources to satisfy them. Lastly, the data plane
is the network infrastructure with little intelligence that follows
orders from the control plane. Readers interested in a thorough
background, challenges, and benefits of SDWSNs can refer
to [9]–[11].

C. Orchestra

Orchestra [12] is designed to run multiple stacked slot-
frames (static schedules) that repeat at different periods to
ensure they do not interfere evenly. Each slotframe is allocated
to a specific network plane that is defined by SDWSN. The
scheduler selects the slotframe with higher priority to run
when multiple slotframes need the communication medium
simultaneously. In its default configuration, Orchestra runs
three slotframes: i) Enhanced Beacon (EB), ii) unicast, and
iii) default traffic slotframes. The EB slotframe is a commu-
nication link from sensor nodes to its children to set the time
source. The unicast slotframe contains links to every neighbor
in the WSN. The default slotframe is used for traffic other
than EB and unicast packets.

D. TSCH

TSCH is a globally synchronized network where traffic
is transmitted based on a static cyclic schedule table called
slotframe C that repeats with the period equal to the slot-
frame size |C| [13], [14]. In a TSCH network, the slotframe

(schedule) is divided into equal-length timeslots as shown in
Fig. 1. We denote each timeslot with cj ∈ C and its length
with |c| (same length for all timeslots). The timeslot length |c|,
typically 10 ms, is long enough for the transmission and
acknowledgment of frames.

To this end, the slotframe size C is equal to the size of n
timeslots, denoted with |C| = n × |c|. Within a slotframe,
timeslots are counted with their subscripts j. Similarly, the
timeslots can be counted from when the network booted with
an Absolute Slot Number (ASN). The ASN serves as a global
clock, and it increases at every timeslot.

Each timeslot cj is divided into a fixed number of cells.
Each cell denoted with ckj indicates the channel offset k. For
channel hopping a cell is used to find the physical channel
to transmit. Considering an array of channel frequencies F to
hop over, the channel frequency f for the cell ckj is calculated
in Eq. (1).

f = F [(j + k)%|F |] (1)

To this end, each cell will select a different physical channel
at consecutive slotframes. The scheduler oversees the role of
cells in the slotframe. The roles can be shared, dedicated,
or empty cells. Shared cells (light blue cells in the example)
are contention-based. They are used by multiple transmitters,
increasing the probability of interference as they can transmit
simultaneously. Reliable transmissions resend frames using a
back-off window when no acknowledgment is received. Dedi-
cated cells (cells labeled with a pair of nodes) are contention-
free. They are allocated carefully not to cause interference
issues with other cells. Retransmissions can occur due to
external interference or bad radio link quality [15].

The example provides an illustration of a TSCH schedule
that has been designed for a six-node WSN. The slotframe
size is five timeslots n = 5. There are six cells with a non-
empty role, one shared cell shown with c24. There are five
dedicated cells that permit the communication of nodes with
their parents. There are also two non-interfering transmissions
at the same slot offset (c22, c32).

E. Related work

Table I presents a summary of the latest research works
on related topics including TSCH, SDWSNs, and RL. It
also provides information related to the year of conception,

4 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

TABLE I
SUMMARY OF RELATED WORKS.

TSCH SDWSNs RL

[12] 2015 ✓ ✗ ✗ ✗
Autonomous scheduler for TSCH without control overhead that does not rely on
centralized or distributed entities.

[16] 2017 ✗ ✓ ✗ ✓
A decision-making approach to select the routing protocol that best suits the application
requirements to get optimal performance using supervised learning.

[17] 2020 ✓ ✓ ✗ ✗
An SDN-based network architecture that provides support to mobile nodes using TSCH.
Mobile nodes have one up- and down-link to every node in the network regardless of
their position in the WSN.

[18] 2020 ✗ ✓ ✗ ✗
An SDN-based approach to pinpoint mobile nodes in WSNs. The approach features a
mobility detector and a k-means cluster algorithm to decouple static from mobile nodes.

[15] 2020 ✓ ✗ ✗ ✗
A low-latency distributed scheduling function to optimize the End-to-End delay, and
reliability.

[19] 2021 ✗ ✓ ✓ ✗
A traffic monitoring framework for SDWSNs. They trained a double deep Q-network
(DDQN) agent to achieve the optimal flow rule match-field policy.

[20] 2021 ✗ ✓ ✓ ✗
A reinforcement learning approach to select the best routing path that improves the QoS
of the SDWSN.

[21] 2023 ✓ ✗ ✓ ✓
A reinforcement learning approach to configure the parameters of the CSMA/CA of the
TSCH protocol to achieve distinctive QoS.

ELISE 2023 ✓ ✓ ✓ ✓
An open-source framework that self-configures network resources in run-time to satisfy
the dynamic user requirements for SDN-based IoT networks.

Article Year Topic UR Major contribution(s)

whether the given article considers user requirements, and ma-
jor contributions. Research works [17], [18] strive to improve
the network performance using SDWSNs. The centralized
architecture of SDWSNs allows the control plane to build
a global view of the network that permits it to make better
decisions, in this case, to provide support for mobile sensor
nodes. The research work in [17] uses a static TSCH schedule
with redundant links for mobile nodes to improve reliability,
whereas [18] uses a supervised learning approach to separate
mobile from static nodes. Articles [19], [20] oversee the IoT
network through the centralized controller, which enables the
collection of observations to design, implement and train a
learning agent to maximize the accumulative reward of actions
taken. The work in [19] focuses on monitoring the SDWSN
traffic, at granularity levels to mitigate flow-table overflows,
while [20] uses a learning agent to find the optimal forwarding
paths for the SDWSN. Articles [12], [15] aim to improve the
performance of TSCH networks. Research work [15] objective
is to reduce the packet latency. This is achieved by dividing
the slotframe into small chunks. Sensor nodes select the chunk
to transmit based on their distance to the border router to
minimize the latency. The work in [12], which has been
previously introduced, is an autonomous scheduler with little
overhead that provides high reliability. The article in [16] main
objective is to select among a set of routing algorithms the
best that suits the given user requirements. The selection of
the routing algorithm is achieved using a supervised learning
approach. The research work in [21] presents a RL approach to
configure the Carrier-Sense Multiple Access/Collision Avoid-
ance (CSMA/CA) parameters in a multi-hop TSCH network.
The framework utilizes neural networks to converge to Quality
of Service (QoS) satisfying configurations efficiently.

Overall, these studies aim to enhance the QoS in network
applications. Performance metrics such as energy, delay, and
reliability are considered, but there has been limited attention
given to real user needs. It is crucial to provide a cus-
tomized engineering solution that seamlessly manages network

resources and orchestrates the network to meet the specific
requirements of applications or users. However, as observed
from the table, this aspect has not received significant focus.
While the work presented in [16] takes user requirements into
account in their proposed approach, their supervised learning
method encounters challenges in predicting the optimal routing
algorithm in dynamic environments like WSNs. Furthermore,
they do not consider the MAC layer, which is responsible
for the duty cycle of sensor nodes in state-of-the-art WSNs,
directly impacting power consumption, delay, and reliability.

III. ELISE FRAMEWORK ARCHITECTURE OVERVIEW

This section presents an overview of the ELISE functional
framework and architecture. Next, a detailed description of
their components is presented, such as the layered architecture
planes.

A high-level overview of the ELISE framework architectural
structure, including its main components and interfaces, is
shown in Fig. 2. The architectural structure follows the typical
three-tier SDN principles for WSNs. The description of each
layer of the architecture from the bottom-up is as follows.

A. Data plane
The data plane, also called the infrastructure plane, is built

upon the interconnection of multiple Networked Embedded
Systems (NES). NES, also named sensor nodes or network
nodes, are resource-constrained devices embedded with a
processing unit, a memory unit, a communication transceiver,
and some form of power supply. They are mainly programmed
for a specific task, such as monitoring a physical variable and
are often deployed in harsh environments. In ELISE, we have
defined two types of NES: the (regular) sensor node and the
sink. All sensor nodes, including the sink, communicate with
each other using IEEE 802.15.4 radios; however, the sink is
also directly connected to the control plane through a wired
interface. All NES are nodes of the network graph that are
denoted with ν ∈ V and all radio communication links are

JURADO-LASSO et al.: ELISE: A RL FRAMEWORK TO OPTIMIZE THE SLOFTFRAME SIZE OF THE TSCH PROTOCOL IN IOT NETWORKS 5

Fig. 2. ELISE architecture.

denoted with ϵ ∈ E , see Sect. II-A for more information.
Besides, we assume that sensor nodes are the talkers of
network streams and all streams have the same listener node,
i.e., the sink or the controller node.

Overall the entire network infrastructure runs on a
lightweight embedded operating system. Among the available
embedded operating systems in the market [9], we have
selected Contiki-NG [22] because

1) it is open-source, well documented, and it has a large
community,

2) it is widely used in the research community,
3) it provides the implementation of TSCH and Orchestra,
4) it can run on both Cooja network simulator [23] and real

hardware.
To comply with SDWSN principles of making the network
infrastructure run simple tasks and remove energy-intensive
functions from sensor nodes, we have redesigned the protocol
stack, from layers three and up, to support the following five
functionalities.

1) Data packets: This packet encapsulates the collected data
and sends them to the control plane. The packet format is
shown in Fig. 3. The cycle sequence and sequence fields
are used, by the reinforcement learning algorithm, to keep
track of the number of packets received in the corresponding
cycle. Temperature, humidity, and light are physical variables
measured by sensors (this can be generalized to variables one,
two, and three). The ASN field contains the ASN when the
packet was created. This field is useful to calculate the packet
latency under specific network configurations such as routes,
TSCH schedules, etc.

2) Neighbor discovery (ND): This packet discovers other
sensor devices in the sender transmission range. It also allows
discovering neighbors with paths to the controller. This packet
contains three fields: rank, Received Signal Strength Indicator
(RSSI), and checksum. The rank field is equivalent to H which
is the number of links originated from the talker node (see
Sect. II-A). The RSSI field specifies the accumulative RSSI to
the controller. This field permits the receiver node to decide

Fig. 3. Data packet format.

Fig. 4. Neighbor advertisement header format.

Fig. 5. Packet format of a TSCH schedule link.

which parent to choose between two equal rank values. Lastly,
the checksum field is an error checking of the packet integrity.

3) Neighbor advertisement (NA): This packet contains mes-
sages to report their status and neighbors’ to the controller,
including the average power consumption, rank, and links
to neighbors. The format of the packet header is shown in
Fig. 4. The payload length field states the number of bytes
contained in the packet payload. The sender rank specifies the
rank of the sender. The sender power field contains the power
consumption of the sender. Cycle sequence and sequence fields
fulfill the same function as in the data packet. The CRC field is
an error checking of the packet integrity. The payload consists
of neighbors’ addresses, RSSI, and Link Quality (LQ) values.

4) Network configuration - TSCH schedules: This packet
type is a control message to establish the TSCH schedules
for the incoming cycle. The header has four fields: payload
length, slotframe size |C|, sequence, and CRC. The payload
length, sequence, and CRC fields fulfill the same functions
mentioned above. The slotframe size field contains the length
of the schedules encapsulated in the payload. The format of a
TSCH link embedded in the payload of this control packet is
shown in Fig. 5. The type field states the type of TSCH link:
transmit (Tx) or listen (Rx). The channel and time offset fields
specify the coordinates of the given link. The source address
field indicates the address of the sensor node that needs to
process this link. Lastly, the destination address is used for
Tx link types to set the neighbor address.

5) Network configuration - Routes: This packet type is also
a control message to establish the forwarding paths for the
incoming cycle. The packet header consists of payload length,
sequence, and CRC fields which fulfill the same function
mentioned above. The packet payload contains the source,
destination, and neighbor addresses to build the forwarding
paths.

6 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

Control packets including TSCH schedules, and route pack-
ets are broadcasted into the WSN. ELISE takes advantage of
the implementation of TSCH and Orchestra in Contiki-NG to
devise a novel approach that enables a run-time reconfiguration
and distribution of TSCH schedules and route packets. ELISE
defines four slotframes, inspired by Orchestra, for specific
traffic planes: EB slotframe for the time source, control traffic
slotframe for control packets, data traffic slotframe for data
packets, and the default traffic slotframe for any other type of
traffic. The control traffic is a broadcast slotframe that permits
the transmission and reception of new TSCH schedules and
route configurations.

For cell ckj , the time slot number j and channel offset k
for sensor node νi and control plane slotframe size of |C| are
calculated as follows.

j = H(νi)%|C| (2)
k = ((i)%|C| − 1) + 1 (3)

These two equations minimize communication interference
between sensor nodes with equal rank values that try to
broadcast control packets to their children.

B. Control plane
The network intelligence resides in this plane. As seen

in Fig. 2, the control plane hosts multiple modules for the
correct functioning of the framework. The control plane can
run locally on a computer or in the cloud. At its core, it is
implemented in Python 3 [24] because it supports multiple
machine learning libraries available in the market, has a large
community, and has an ample library collection. Here, we
briefly introduce the core functionalities of each module.

1) Network information and statistics: This module holds all
network information collected. It also includes all packets
received and simple statistics.

2) Resource manager: This module is in charge of orches-
trating all resources in the control plane. Resources in this
module include database, serial interface, and network access.

3) Network manager: This module holds key functions to
correctly operate the data plane. Functions such as writing
and reading from the network reside here.

4) Route manager: This module hosts all functionalities to
build the forwarding paths of the network. It hosts multiple
traditional routing algorithms. It is also flexible to allow adding
new centralized routing protocols.

5) TSCH manager: In this module resides the functions to
correctly build TSCH schedules. It has been designed to easily
create new TSCH schedulers on top.

6) Reinforcement learning: The reinforcement learning
module is the main intelligent component of the entire control
plane. It uses all other modules to collect data, learn from the
environment, tune hyper-parameters and evaluate the trained
agent. This module is discussed in detail in the next section.

C. Application plane
The application plane hosts user requirements and programs

such as real-time monitoring tools that convey information

Fig. 6. The architecture of the RL agent of ELISE.

regarding the status of the network. This plane instructs the
control plane on the current user requirements through the
northbound API.

IV. REINFORCEMENT LEARNING MODULE

This section takes the reader through the design and imple-
mentation of a reinforcement learning approach to optimize
the slotframe size of TSCH in SDN-based IoT networks
considering the user requirements. Readers interested in the
background of RL can refer to [25] and its applications to
SDWSNs can be found in [9].

A. Solution approach

To solve this multi-objective function that self-adapts the
slotframe size of the TSCH schedule to the optimal length that
best suits a set of user requirements, we use a reinforcement
learning agent that hosts neural networks in its core, as shown
in Fig. 6. ELISE provides flexibility to evaluate different rein-
forcement learning algorithms. Algorithms that we consider in
this research are Deep Q Network (DQN) [19], Asynchronous
Advantage Actor Critic (A2C) [26], and Proximal Policy
Optimization (PPO) [27].

The proposed solution follows the typical three-tier prin-
ciples for SDWSNs, where the control plane layer collects
data, orchestrates resources, performs intelligent calculations,
and deploys new network configurations into sensor nodes.
At the initial state of the data plane, sensor nodes discover
their path to the controller using ND packets. They then start
sending NA packets to the controller. The controller processes
these packets to make future decisions. The reinforcement
learning agent predicts the next slotframe size. It then pre-
pares the TSCH schedules and routes using the TSCH and
route manager module. Finally, the control plane deploys new
configurations through the network management module.

JURADO-LASSO et al.: ELISE: A RL FRAMEWORK TO OPTIMIZE THE SLOFTFRAME SIZE OF THE TSCH PROTOCOL IN IOT NETWORKS 7

ELISE develops a Markov Decision Process (MDP) frame-
work with the architecture depicted in Fig. 6. This framework
enables the reinforcement learning algorithm to dynamically
select and deploy optimal actions based on the observations
to maximize the average accumulative reward. The MDP is
represented by a tuple < S,A,R >, where S represents the
state space, A represents the action space, and R represents
the immediate reward.

• State Space: As previously discussed, there are three
performance metrics, and three user requirements, at the
end of each iteration. However, the learning time can be
reduced by adding the last scheduled link in the TSCH
slotframe (λ), and the current slotframe size (|C|). λ
enables the agent to avoid slotframe sizes that are below
the last scheduled link in the scheduler, otherwise, it can
alter the normal behavior of the TSCH network. The state
space of the proposed work is defined as follows.

S ≜ {(Ω1, α1, β1, γ1, λ1, |C|1), ...,
(Ωn, αn, βn, γn, λn, |C|n)}

(4)

Where Ω represents the cost of the SDWSN. α, β, and γ
are the user-defined coefficients for power consumption,
delay, and reliability, respectively.

• Action Space: The RL agent aims to find the optimal
slotframe size of the data plane traffic plane given the set
of user requirements. At every decision-making point, the
agent predicts the next slotframe size given the above-
mentioned observations. The agent can take multiple
consecutive actions (slotframe sizes) before reaching the
optimal solution. The number of steps taken to reach
the optimal solution depends on the current state of the
environment, especially, the current slotframe size (|C|)
and the user requirements (α, β, γ).
The agent selects the next action between

1) increasing |C|,
2) decreasing |C|, or
3) continuing using the current |C|.

The selection of the slotframe size is bounded by numbers
that are mutually prime to other slotframes in the TSCH
network. Recall that the TSCH network runs multiple
stacked slotframes that repeat at different periods (mutu-
ally prime slotframe sizes) to ensure they do not interfere
evenly. Therefore, the action space for selecting the next
slotframe size in the control plane is defined as follows.

A ≜ {a : gcd(a, |C|EB , |C|CP , |C|DF) = 1} (5)

Where gcd represents the greatest common divisor, and
|C|EB ,|C|CP , and |C|DF are the slotframe sizes of the
EB, control, and default traffic planes.

• Immediate reward function: The reward function has been
designed to select slotframe sizes within a valid range and
to ease learning. Whenever the agent selects a slotframe
size below λ, it is penalized. In the other case, whenever
the agent selects a slotframe size that goes beyond the
maximum valid slotframe size (µ), it is also penalized.
The agent learns to select the next action within this
valid range while maximizing the accumulative reward.

The agent is positively rewarded if the slotframe size lies
within the valid range. The amount rewarded depends
on the performance metrics and user requirements. The
reward function is expressed as follows.

R(s, a) =

−Gmax, |C|DP ≥ µ
|C|DP ≤ λ

Υ− Ω, λ < |C|DP < µ

(6)

Where |C|DP is the slotframe size of the data traffic
slotframe, and Gmax is the maximum penalty for taking
an invalid slotframe size. Υ is a constant that makes sure
the immediate reward stays always positive. Υ is equal
to the worst case of Ω. Therefore, Υ = 2. It is note-
worthy that we changed the signs in (7) to maximize the
immediate reward function. Also, we have defined two
terminating conditions for episodes. We end an episode
either every time the agent selects a slotframe size outside
the valid range or when we reach the maximum number
of timesteps.

B. Cost Function
As discussed in previous sections, it is vital to take into

consideration the dynamic changes in user requirements to
design a tailored engineering solution that self-adapts to these
changes. This approach will allow the framework to self-
reconfigure the infrastructure resource that complies with the
current state of user requirements while maximizing network
performance. This reinforcement learning-based model opti-
mizes the slotframe size of the data plane slotframe introduced
in the above sections. Other slotframes are not considered
in the optimization because they are control slotframes that
are mandatory for the basic operation of the network, and
tempering with them can make the network fail.

We now design the overall objective cost function as a
combination of several individual objective metrics, capturing
the power consumption, stream delay, network reliability, and
network dependability forming a multi-objective cost function.
Since our main objective is to maximize the network perfor-
mance given a set of user requirements, we design a weight-
based multi-objective function. Specifically, the weights of this
function are the set of user requirements. This multi-objective
cost function can be expressed as follows.

Ω = ω1 × ω2

ω1 = α× P̃ + β × D̃ + R̃× (1− γ)

subject to α+ β + γ = 1.

(7)

where ω1 captures the cost of scheduling and ω2 captures the
cost of routing, both presented in Sect. IV-C. For the cost of
scheduling, α, β, and γ are the user requirements for power
consumption, delay, and reliability, respectively (see Sect. IV-
C for more information). Since we aim at minimizing the cost
function, the inverse of the reliability is used which helps
to find the maximum reliability cases. They are set by the
users, and the overall summation is equal to the unity. ELISE
calculates the performance metrics at the end of every cycle;
therefore, the samples within the time interval are considered

8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

a constraint (they are strictly greater than zero). This holds for
all performance metrics samples. The slot duration of TSCH
networks can not be less or equal to zero. It is worth men-
tioning that the optimization is done over the slotframe size
of the data plane slotframe of the TSCH protocol. Therefore,
the SDN control plane takes several sequential actions at each
network state to find the optimal slotframe size given the user
requirements and current network state.

C. Objectives
This section gives the details of the terms of the cost

function Ω that captures the network performance. The per-
formance metrics are as follows: power consumption, delay,
reliability, and dependability. The first three metrics are used
in the cost term ω1 and the dependability is defined with ω2.

1) Power consumption: The power consumption is collected
from each network node in the WSN. It mainly depends on
the energy spent to transmit and receive a packet. In TSCH
networks, nodes wake up their radios at specific timeslots to
either transmit a packet or listen to the wireless medium, then
switch to another state such as low power mode. In ELISE,
we assume three states for a network node: i) listening, ii)
transmitting iii) listening and transmitting (forwarding). We
ignore the idle state of the nodes since we aim at minimizing
the workload of the network nodes.

The power consumed for transmitting the network
stream τi ∈ T from the talker to the listener denoted with Pi

is calculated from Eq. (8). The consumed power is normalized
in the range [0, 1].

Pi =

∑
ϵm,n∈ri

(V m × Imtx + V n × Inrx)× |c|
(V m × Immax + V n × Inmax)× |C|

(8)

where V i is the power supply voltage of the node νi (in volts),
Iitx is the transmission current consumption of the node νi
and Iirx is the reception current consumption of the node νi
(both in mA). The maximum value of the current consumption
while transmitting and receiving is captured by Imax. The
average power consumption of the network P̃ is defined as the
average of the power consumed for transmitting all network
streams. The controller receives the NA packets from network
nodes and processes the data in the sender power fields of the
packets and stores them in the database. When a cycle finishes,
the controller retrieves, from the database, the latest power
consumption, and calculates the network power consumption
cost P using Eq. (9).

P̃ (θ1) = P̄ + θ1 × σP

P̄ =
1

|T |
∑
τi∈T

Pi

σP =

√∑
τi∈T |Pi − P̄ |

|T |

(9)

where P̄ is the average power consumption in the network,
σP is the normal distribution of the node power consumption
in the network, and θ1 is the weight of the node power

consumption distribution. The larger θ1 value drives the search
for a solution with evenly distributed power consumption
across the nodes. With θ1, the user achieves the desired
distribution based on the requirements.

2) Delay: The packet delay is calculated as the interval
from when the packet is generated at the talker to when the
packet is received by the listener in the control plane. For
a TSCH network, we can estimate the packet delay of the
stream τi using the ASN as follows. The packet delay value
is normalized in the range of [0, 1].

Di = (ASNtx −ASNrx)×
|c|
|C|

(10)

The control plane then calculates the average delay of the
network D̃ using Eq. (11) at the end of each cycle. The
controller retrieves from the database, the latest D̄ for all
network streams τi ∈ T .

D̃(θ2) = D̄ + θ2 × σD

D̄ =
1

|T |
∑
τi∈T

Di

σD =

√∑
τi∈T |Di − D̄|

|T |

(11)

where σD captures the normal distribution of stream delays.
Using θ2 user can adjust the weight of delay distribution in cal-
culating the average delay. The larger weight drives the search
for a solution with evenly distributed stream delays. Similar
to θ1, the user achieves the desired distribution using θ2 set.

3) Reliability: To calculate the reliability, we first define the
Packet Delivery Ratio (PDR) during a cycle in Eq. (12). The
control plane performs the calculation of the PDR as follows.

PDR =
|τrx|
|τtx|

subject to τtx > 0.

(12)

where τrx and τtx are the numbers of received and transmitted
packets, respectively. The control plane queries the database
to obtain the latest PDR values in the network and calculates
the network reliability R̃ at every end of a cycle as follows.

R̃ =
1

PDR
subject to PDR > 0.

(13)

4) Dependability: We define the dependability metric ω2 as
the cost function for finding the best path for the streams in the
network. The dependability metric is based on a simple con-
cept, i.e., the network is more dependable where fewer nodes
are involved in the network functioning (stream transmission).
Based on this concept, the most dependable network is the
one where all streams use the shortest path for transmission.

To this end, we define the power dependability PDEP of
the node νi ∈ V in Eq. (14). The power dependability of a
node shows how much the node is under the workload, i.e.,
transmission and receiving the data. The more a node is under
the workload, the less dependable is the node.

JURADO-LASSO et al.: ELISE: A RL FRAMEWORK TO OPTIMIZE THE SLOFTFRAME SIZE OF THE TSCH PROTOCOL IN IOT NETWORKS 9

DEPi = DEP tx
i +DEP rx

i

DEP tx
i =

∑
(V i × Iitx × |c|)

subject to ∀ϵi,x ∈ ry and ∀ry ∈ R,

DEP rx
i =

∑
(V i × Iirx × |c|)

subject to ∀ϵz,i ∈ rw and ∀rw ∈ R

(14)

The power dependability of the node represents the work-
load of the node which is used for determining the most
dependable path for a specific stream. Thus, we calculate the
dependability of the stream τj ∈ T as follows.

DEPj =
∏

PDEPi

subject to ϵi,x ∈ rj .
(15)

With the dependability of the streams in the network, we
calculate the average dependability of the network ω2 using
Eq. (16).

ω2 =
1

|T |
∑
τj∈T

DEPj

subject to |T | > 0.

(16)

V. PERFORMANCE EVALUATION

This section tests ELISE’s ability to self-adapt the network
resources to the configuration that best satisfies the dynamic
user requirements. Multiple user requirements are put in place
to get insights into the impacts on the performance metrics. We
compare the performance of ELISE against Orchestra, which is
the TSCH scheduler of choice for IoT networks. Experiments
are conducted in both the Contiki Cooja network simulator
and a real-world testbed; however, simulation results that have
confirmed the same findings as the testbed experiments are
omitted due to space constraints.

A. Testbed setup
The experiments are conducted on the premises of the FIT

IoT Lab [28]. This testbed, which has six different sites across
France, offers facilities with hundreds of wireless sensor nodes
that allow the evaluation and experimentation of large-scale
WSNs. Processors architectures supported include MSP430,
STM32, Cortex-A8, and 802.15.4 radios chips running at 800
MHz or 2.4 GHz. They also provide a CLI tool to access the
testbed to manage resources and experiments. It also supports
a range of embedded operating systems.

We specifically built a 10-sensor-node network (|V| = 10)
with a maximum depth of three hops. The topology is shown in
Fig. 7. We use this network to not overcomplicate the experi-
ments and to let us draw conclusions from the proof of concept
of the framework. We use the IoT-LAB M3 platform for nodes
and the sink. This platform has embedded an ARM-Cortex
M3 microcontroller (32-bit CPU @72 MHz), an ATMEL radio
running at 2.4 GHz (designed for the IEEE 802.15.4 standard),
and four sensors (light, pressure & temperature, accelerometer,
and gyroscope). This network operates with the Contiki-NG
operating system. As aforementioned, we have redesigned the

Fig. 7. Topology of the testbed setup.

Contiki-NG network stack to support the SDWSN functionali-
ties described in Section III-A and IV, including support for all
Orchestra-based slotframes. The control plane communicates
with the data plane, specifically the sink node, through the
Secure Shell Protocol (SSH). The control collects from and
transmits commands to the WSN using this protocol. It is
written in Python 3.10, uses Stable Baselines 3 [29] for the
RL package, and implements all functionalities previously
described in Section III-B and IV. Besides, it operates on a
remote computer running macOS Big Sur on an i9 processor
of eight cores at 2.3 GHz. The experiment parameters used
throughout the results are summarized in Table II. There exist
a trade-off between the value for the iteration window interval.
A large window interval will filter out noise in the collected
data; however, the control plane may not be able to react
to dynamic changes in the network. On the other hand, if
the interval is small, the number of network reconfigurations
increases and so does the noise. This is an open research
question in SDWSNs [16]. In our experiments we set this value
to 60 control packets (|T | = 60); however, this value can be
changed to meet user requirements. Although with θ1 and θ2
in objective metrics (see Sect. IV-C) the desired distribution
of power and delay is achievable, for the evaluation where we
have considered a fixed path for streams, we set both θ1 and θ2
to zero which remove the effect of power and delay distribution
in the search. In future work, ELISE will determine the path
for streams.

Before we jump into the evaluation of ELISE, we want to
discuss in the next section the challenges found while training
the reinforcement learning agent.

B. SDWSN model approximation
The training of the learning model involves taking the

collected experience to adjust the weights of the deep neural
network. The collected experience is a group of pair state-
actions. A group of a pair of state-action is formed at the
end of every action taken. The framework selects and deploys

10 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

TABLE II
EXPERIMENT PARAMETERS.

Parameter Value
No. of sensor nodes (|V|) 10
Sensor nodes type IoT-LAB M3
Transmission power −17dbm
Iteration window interval 60pkts
Power measure sample time (tsample) 60s
Sensor node supply voltage (V) 3V
Network node rank (H) 3
TSCH slot duration (|c|) 10ms
Reward constant Υ 2
Minimum slotframe size λ 10
Maximum slotframe size µ 70
Penalty Gmax −4
Max. episode length (V) 50

an action. It then waits for the cycle to finish to obtain
the observations given that action. The time to complete an
iteration impacts the total training time of the model. Training
the model in the testbed is not feasible as an iteration can take
a couple of minutes to complete depending on the frequency
of control packets (NA packets) and the window interval.
Although the Cooja network simulator reduces the iteration
time to tens of seconds, it is not enough to train the network
in a reasonable amount of time. The total training time can be
estimated by iter ∗ ts, where iter is the average time of an
iteration, and ts is the total number of timesteps e.g. if Cooja
takes 30 seconds to complete an iteration then it can take
up to five weeks to train for 100k timesteps. For real-world
deployment an iteration can take three minutes to complete,
depending on the window interval; therefore, it can take up to
3.4 months to train for 50k timesteps. To solve this issue, we
mathematically model the TSCH network in the function of
the slotframe size for the data plane traffic. This mathematical
model allows us to estimate the network cost given a slotframe
size. These performance metrics are needed for the immediate
reward calculation previously discussed in Section IV-A. This
approach reduces the time of an iteration significantly. This
approximation model is also useful for hyperparameter tuning,
which searches for the best model architecture by creating
multiple scenarios with different hyperparameters using prun-
ing strategies.

The main objective of the SDWSN approximation model
is to estimate the values of the network average power con-
sumption P̃ , the average network delay D̃, and the network
reliability R̃ when changing the slotframe size |C|. It facilitates
the calculation of the immediate reward of an action taken.
These values are estimated using the minimum mean square
error (MMSE) estimator (E =

∑k
j=0 |p(xj)−yi|2). To obtain

them in the function of the slotframe size, we program a simple
task in the control plane. It builds and sends TSCH schedules
with different slotframe sizes using the TSCH scheduler and
network manager of the proposed architecture (see Fig. 2). The
controller continuously selects and sends a slotframe size |C|
from the set of slotframe size numbers that are mutually prime
to other slotframes. We then plot the values for P̃ , D̃, and R̃
using the 95% confidence interval. We then find the vector
coefficients(ζ) that minimize the squared error in the degree

10 20 30 40 50 60 70
|C|

0.86

0.88

0.90

P

P(|C|) = |C|4 * (1.14E 08) + |C|3 * (2.22E 06) + |C|2 * (1.60E 04) + |C| * (5.27E 03) + (9.35E 01)

(a) Normalized average network power consumption over slotframe size.

10 20 30 40 50 60 70
|C|

0.00

0.02

0.04

0.06

D

D(|C|) = |C|3 * (2.99E 08) + |C|2 * (4.52E 06) + |C| * (5.81E 04) + (1.03E 04)

(b) Normalized average network delay over slotframe size.

10 20 30 40 50 60 70
|C|

0.8

1.0

R

R(|C|) = |C| * (2.76E 04) + (9.65E 01)

(c) Normalized average network reliability over slotframe size.

Fig. 8. Experimental P̃ , D̃, and R̃ values for different slotframe sizes
|C|.

order of four, three, and one for P̃ , D̃, and R̃, respectively.
We use the testbed setup shown in Fig. 7, and the experiment

parameters in Table II. The plot charts in Fig. 8 show the
estimated normalized values of the network average power
consumption (P̃), delay (D̃), and reliability (R̃) against the
slotframe size (|C|). The P̃ metric decreases exponentially as
|C| increases as shown in Fig. 8a. This is expected as when we
increase the slotframe size, we increase the number of unused
timeslots in the slotframe. Therefore, it reduces the average
power consumption in sensor nodes. Fig. 8b shows that the D̃
linearly increases with |C|. This is also expected since the time
between links in consecutive slotframes increases, therefore,
packets wait longer in the queue to be transmitted. Fig. 8c
shows that the R̃ linearly decreases with |C| but at a smaller
rate. Links in TSCH networks are very reliable due to their
time and frequency diversity; however, they can decay when
using a large slotframe size due to the increasing waiting time
for retransmissions and congested packet queues. We now use
this approximation model to train the DQN, A2C, and PPO
algorithms and put them under test in the testbed.

C. Training
Fig. 9 present the learning process of DQN, A2C, and PPO

reinforcement learning algorithms running at the RL module of
the control plane. It is noteworthy that every episode starts at
a random state, this includes random slotframe size. Training
for diverse starting slotframe sizes permits the agent to learn
how to solve the problem in the presence of multiple states,
e.g. new user requirements. Points in the chart represent the
average accumulative reward during the last 1000 iterations.
It is clear that the convergence performance of PPO is better

JURADO-LASSO et al.: ELISE: A RL FRAMEWORK TO OPTIMIZE THE SLOFTFRAME SIZE OF THE TSCH PROTOCOL IN IOT NETWORKS 11

0k 20k 40k 60k 80k 100k
Timesteps

46

48

50

52

54

56

Av
er

ag
e

ac
cu

m
ul

at
iv

e
re

wa
rd

DQN
PPO
A2C

Fig. 9. Learning process of DQN, A2C, and PPO for solving the overall
objective function.

TABLE III
EVALUATION OF DQN, A2C, AND PPO ALGORITHMS OVER 100

EPISODES.

Algorithm Avg. Accumulative Reward
PPO 56.44± 0.11
A2C 56.37± 0.14
DQN 56.34± 0.15

than that of the DQN and significantly better than A2C.
PPO converges after approximately 50k iterations, and the
average accumulative reward is roughly 56.3. Although DQN
reaches the maximum average accumulative compensation at
approximately 50k iterations, it only converges to an average
accumulative reward of 55 after 80k iterations. In contrast,
A2C has an average accumulative reward of approximately
54, but it is still struggling to converge to a steady value.
PPO seems the best candidate to solve the problem; however,
we also evaluate the algorithms’ performance by taking solely
deterministic actions over 100 episodes to decide on which
algorithm to pick. Table III shows that PPO obtained the
greatest average accumulative reward followed by A2C and
DQN. All algorithms perform well in solving the problem;
however, PPO stands out of the three. Therefore, we use
PPO for our result analysis in the testbed. We also tune the
hyperparameters of the PPO model. These hyperparameters
are essential for finding the set of hyperparameters to build
the model. Without hyperparameter tuning, our model may
produce sub-optimal solutions, as they fail to minimize the
loss function. For hyperparameter tuning, we used Optuna [30]
which is a hyperparameter optimization framework for ma-
chine learning. We tune the hyperparameters for PPO using a
random sampler and medium pruner, eight parallel jobs, with
1000 trials and a maximum of 50000 steps.

D. Experimental evaluation

We now evaluate the overall ELISE framework, includ-
ing the trained agent, in the real-world testbed. We use
the testbed setup previously discussed in Section V-A and

the trained agent examined in Section V-C. The agent only
takes deterministic actions. We designed one single scenario
that contains four distinct equally spaced user requirements:
balanced, prioritized delay, prioritized power consumption,
and prioritized reliability. This scenario allows us to test the
agent based on the ability to select the best action given the
observations and dynamic user requirements. It also enables us
to observe the ability of the agent to switch between different
slotframe sizes given a change in the user requirements.
The evaluation consists of 10 episodes, where each episode
lasts for 160 iterations. Each iteration, which is the size of
the window interval, takes approximately four minutes to
complete. Therefore, each episode runs for approximately 10.6
hours. The initial slotframe size (|C|) is set to 10 for all
episodes. We plot the results individually for each performance
metric against the slotframe size and the immediate reward
against the slotframe size as shown in Fig 10. We use the
95% confidence interval for all charts.

1) Balanced SDWSN: We consider the case where the
network user puts roughly the same priority on all three
performance metrics. Therefore, for this specific requirement,
we set values of the user coefficients α, β, and γ as 0.4, 0.3,
and 0.3, respectively. The balanced requirement is applied at
timestep zero and lasts for 40 timesteps (Zone 1 in Fig. 10).
We can see that the trained agent needed three actions to
reach the steady state value |C| of 18 on average and that
the RL agent balances all performance metrics equally. The
network’s average power consumption is roughly 4443µW
(see Fig. 10a), the network’s average delay is almost 220ms
(see Fig. 10b), and the network’s average reliability is around
0.95 (see Fig. 10c). The network reliability shows a larger
distribution in comparison to other performance metrics. This
can be attributed to the multiple sources of interference
present on the testbed. Also, the relatively small size of the
observations affects the reliability; therefore, missing only one
packet will reduce the reliability by a few percentage points.
The average immediate reward is around 1.13 (see Fig. 10d).
The dispersion shown in the network reliability directly affects
the distribution of the reward, but not at the same level as in
the prioritized reliability case.

2) Prioritized delay: In this case, ELISE users prioritize
the network delay over the network reliability and power
efficiency. Therefore, we set the user coefficient values α, β,
and γ as 0.1, 0.8, and 0.1, respectively. The prioritized delay
requirement is applied after 40 timesteps of the start of the
episode and lasts for 40 timesteps (Zone 2 in Fig. 10). It can
be seen that the RL agent reacts immediately after the user
requirements change. The agent self-adapts to these changes
and moves the slotframe size from 18 to 11 on average in about
three actions. Since the delay is prioritized, we can see that the
network average delay is less than in other requirement cases.
On the other hand, the network power consumption reaches the
maximum across all requirement cases as the slotframe size is
the lowest in the entire episode. The network average delay,
power consumption, and reliability are 125ms (see Fig. 10b),
4540µW (see Fig. 10a), and 0.95 (see Fig. 10c), respectively.
The average immediate reward is 1.13 and has a smaller
distribution than in the previous case, as the contribution of

12 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

0 20 40 60 80 100 120 140 160
Iteration

4350

4400

4450

4500

4550

Ne
tw

or
k

av
er

ag
e

po
we

r [
W

]

1 2 3 4

Network avg. power

10

15

20

25

30

35

|C
|

(a) Network average power consumption over the number of iterations.

0 20 40 60 80 100 120 140 160
Iteration

100

200

300

400

500

Ne
tw

or
k

av
er

ag
e

de
la

y
[m

s]

1 2 3 4

Network avg. delay

10

15

20

25

30

35

|C
|

(b) Network average delay over the number of iterations.

0 20 40 60 80 100 120 140 160
Iteration

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ne
tw

or
k

av
er

ag
e

re
lia

bi
lit

y

1 2 3 4

Network avg. reliability

10

15

20

25

30

35
|C

|

(c) Network average reliability over the number of iterations.

0 20 40 60 80 100 120 140 160
Iteration

1.025

1.050

1.075

1.100

1.125

1.150

1.175

1.200

Av
er

ag
e

im
m

ed
ia

te
 re

wa
rd

1 2 3 4

Avg. immediate reward

10

15

20

25

30

35

|C
|

(d) Network average immediate reward over the number of iterations.

Fig. 10. Experimental evaluation of the ELISE framework and the RL agent for four user requirement cases. In zone 1, the balanced user
requirements is running (α = 0.4, β = 0.3, γ = 0.3). Zone 2 depicts the case for the prioritized delay user requirements (α = 0.1, β =
0.8, γ = 0.1). Zone 3 shows the case for the prioritized power consumption user requirements (α = 0.8, β = 0.1, γ = 0.1), and zone 4
represents the case for the prioritized reliability user requirements (α = 0.1, β = 0.1, γ = 0.8).

the network reliability in the reward function is less as seen
in Fig. 10d.

3) Prioritized power consumption: For this case, the network
power efficiency is prioritized over the network delay and
reliability. Thus, we set the user coefficient values for α, β,
and γ as 0.8, 0.1, and 0.1, respectively. The requirements for
this case are applied after 80 timesteps of the start of the
episode and it also has a duration of 40 timesteps (Zone 3
in Fig. 10). The network switches from a prioritized delay
network configuration to a prioritized power consumption
network configuration. The RL agent detects changes in the
user requirements (see the immediate reward at timestep
80) and it starts increasing the slotframe size immediately.
Specifically, it increases the slotframe size from 11 up to 34
on average. It takes around 13 actions to reach the steady
state value. At this point, the network experience less power
consumption and higher delays overall. The network average
delay, power consumption, and reliability are 470ms (see
Fig. 10b), 4367µW (see Fig. 10a), and 0.95 (see Fig. 10c),
respectively. The average immediate reward is 1.14 and shows
less distribution than the balanced and reliable SDWSN, as the

contribution of network reliability is also less in the reward
function as shown in Fig. 10d.

4) Prioritized reliability: In this situation, users prioritize net-
work reliability over network power consumption and delay.
Therefore, we selected the weights for this case as α = 0.1,
β = 0.1 and γ = 0.8. The requirements for this case are
applied at timestep 120 and it lasts for 40 timesteps (Zone 4 in
Fig. 10). At this time, the network switches from a prioritized
power consumption configuration to a prioritized reliability
network configuration. The RL agent starts decreasing the
slotframe size once it detects a change in the user require-
ments. The RL agent takes consecutive actions to reduce the
slotframe size down to 12 on average. It also takes around
13 actions to reach the steady state value. At this point, it
is clear that the network experiences a low delay (145ms in
Fig. 10b) and high power consumption (4510µW in Fig. 10a).
The network reliability is high with a steady-state value of
0.95 on average (see Fig. 10c). Overall, the network reliability
is high for all user requirement cases, but it also shows a
large distribution. This can be attributed to the frequency of
TSCH schedule updates. At every TSCH schedule update, the

JURADO-LASSO et al.: ELISE: A RL FRAMEWORK TO OPTIMIZE THE SLOFTFRAME SIZE OF THE TSCH PROTOCOL IN IOT NETWORKS 13

Balanced
= 0.4,
= 0.3,
= 0.3

Delay
= 0.1,
= 0.8,
= 0.1

Power
= 0.8,
= 0.1,
= 0.1

Reliability
= 0.1,
= 0.1,
= 0.8

Orchestra
4300

4350

4400

4450

4500

4550

4600

Ne
tw

or
k

av
er

ag
e

po
we

r [
W

]

(a) Network average power consumption.

Balanced
= 0.4,
= 0.3,
= 0.3

Delay
= 0.1,
= 0.8,
= 0.1

Power
= 0.8,
= 0.1,
= 0.1

Reliability
= 0.1,
= 0.1,
= 0.8

Orchestra
0

100

200

300

400

Ne
tw

or
k

av
er

ag
e

de
la

y
[m

s]
(b) Network average delay.

Balanced
= 0.4,
= 0.3,
= 0.3

Delay
= 0.1,
= 0.8,
= 0.1

Power
= 0.8,
= 0.1,
= 0.1

Reliability
= 0.1,
= 0.1,
= 0.8

Orchestra
0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ne
tw

or
k

av
er

ag
e

re
lia

bi
lit

y

(c) Network average reliability.

Fig. 11. Experimental comparison between the ELISE framework and Orchestra.

protocol updates its schedules, and there might be packets in
the queue waiting to be transmitted. These packets are dropped
due to the new schedule. To increase network reliability, users
may want to increase the size of the window interval between
cycles, at the expense of a less sensitive controller to changes
in the environment. Moreover, the distribution of the network
reliability can also be attributed to the highly dense testbed,
which has multiple platforms and the ability to run multiple
experiments at the same time. The distribution of the network
reliability also affects the immediate reward; however, the RL
agent could successfully select the correct actions despite the
noise as seen in Fig. 10d.

5) ELISE and Orchestra: In Fig. 11, we present an exper-
imental comparison between the ELISE framework and Or-
chestra. We consider three performance metrics as previously
discussed: network average power consumption, delay, and
reliability. We do not look into the immediate reward metric
as Orchestra is an autonomous TSCH scheduler. This experi-
mental evaluation considers four distinct user requirements:
balanced, prioritized delay, prioritized power consumption,
and prioritized reliability. The performance evaluation of net-
work average power consumption in steady-state is shown in
Fig. 11a. Orchestra has the largest average power consump-
tion among all cases, and the prioritized power consumption
case has the least average power consumption. The ELISE
framework and the RL agent continuously adapt the optimal
slotframe size to satisfy the user requirements, in this case,
minimizing the network power consumption. Orchestra lacks
this functionality forcing it to use a fixed slotframe size since
the network boot. Even the prioritized delay user requirement
presents less power consumption in comparison to Orchestra.
This is because, in such a user requirement scenario, the
power consumption weighting factor (α) still contributes to
the immediate reward function. The network average delay
comparison is presented in Fig. 11b. Orchestra presents a
similar network average delay to that in the prioritized delay
scenario, but the delay in ELISE is relatively smaller. In
contrast, the prioritized power consumption requirement has
the largest network delay due to the increased slotframe size
to reduce power consumption. The network average reliability
comparison is shown in Fig. 11c. The network reliability in

steady-state, across all user requirement cases and Orchestra,
is on average 95%. Orchestra shows slightly better network
reliability than ELISE. This can be attributed to the au-
tonomous scheduling and the least number of control packets
transmitted. The performance of ELISE at maximizing the
network reliability for a prioritized reliability user requirement
is not very notorious from the chart; however, ELISE could
maintain relatively high network reliability. Also, The change
in network reliability is small for relatively short slotframe
sizes as shown in Fig. 8c; therefore, it is expected that network
reliability will be more affected by slotframe sizes greater than
70.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose ELISE, an open-source framework
that utilizes deep reinforcement learning to self-adapt network
resources and optimize the slotframe size of TSCH for SDN-
based IoT networks, considering dynamic user requirements.
We provide a detailed description of all components involved
in the framework, including the network manager module for
resource orchestration, the network information and statistics
module for data collection, the TSCH module for schedule
processing, the routing manager module for route processing,
and the ML module for hosting reinforcement learning func-
tions.

We design a reward model based on a multi-objective
function to select the optimal TSCH slotframe size that best
matches the current user requirements. To expedite the training
process of the reinforcement learning agent, we mathemati-
cally model the TSCH network in terms of the slotframe size.
We then train and evaluate multiple state-of-the-art reinforce-
ment learning algorithms to solve the problem.

Finally, the trained agent predicts the next valid slotframe
size based on collected observations, and the framework
orchestrates resources and deploys new network configurations
to sensor nodes. We conduct several experiments to evalu-
ate the performance of ELISE, considering a scenario with
four distinct user requirements: balanced, prioritized delay,
prioritized power consumption, and prioritized reliability. The
tests assess ELISE’s ability to self-adapt network resources in
response to changes in user requirements. Results demonstrate

14 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

that the proposed framework can detect changes in user
requirements and orchestrate network resources effectively,
thereby maximizing overall network performance.

This article also highlights the complexities involved in eval-
uating TSCH networks using reinforcement learning in real-
world deployments. The training phase is laborious and time-
consuming. Although network simulators reduce the iteration
time to tens of seconds, it is still insufficient to train the net-
work within a reasonable timeframe. Thus, an approximation
model of the network was employed to accelerate the training
process.

During each iteration, a few unnecessary network reconfig-
uration packets are transmitted and lost, leading to a decrease
in overall network reliability. Additionally, a few packets are
dropped in the TSCH queue due to schedule updates. We
plan to address this issue as a future extension of our work,
and we intend to further leverage the framework to develop a
reinforcement learning scheduler that can autonomously adapt
to user requirements

REFERENCES

[1] F. Deng, X. Yue, X. Fan, S. Guan, Y. Xu, and J. Chen, “Multisource
energy harvesting system for a wireless sensor network node in the field
environment,” IEEE Internet of Things Journal, vol. 6, no. 1, pp. 918–
927, 2018.

[2] L. M. Borges, F. J. Velez, and A. S. Lebres, “Survey on the characteri-
zation and classification of wireless sensor network applications,” IEEE
Communications Surveys & Tutorials, vol. 16, no. 4, pp. 1860–1890,
2014.

[3] G. P. Joshi, S. Y. Nam, and S. W. Kim, “Cognitive radio wireless sensor
networks: applications, challenges and research trends,” Sensors, vol. 13,
no. 9, pp. 11 196–11 228, 2013.

[4] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An
application-specific protocol architecture for wireless microsensor net-
works,” IEEE Transactions on wireless communications, vol. 1, no. 4,
pp. 660–670, 2002.

[5] S. K. Singh, P. Kumar, and J. P. Singh, “A survey on successors of
LEACH protocol,” IEEE Access, vol. 5, pp. 4298–4328, 2017.

[6] S. M. Chowdhury and A. Hossain, “Different energy saving schemes in
wireless sensor networks: A survey,” Wireless Personal Communications,
vol. 114, no. 3, pp. 2043–2062, 2020.

[7] D. Dujovne, T. Watteyne, X. Vilajosana, and P. Thubert, “6TiSCH:
Deterministic IP-Enabled Industrial Internet (of Things),” IEEE Com-
munications Magazine, vol. 52, no. 12, pp. 36–41, 2014.

[8] Y. Ha and S.-H. Chung, “Traffic-aware 6TiSCH Routing Method for
IIoT Wireless Networks,” IEEE Internet of Things Journal, 2022.

[9] F. F. Jurado-Lasso, L. Marchegiani, J. F. Jurado, A. M. Abu-Mahfouz,
and X. Fafoutis, “A survey on Machine Learning Software-Defined
Wireless Sensor Networks (ML-SDWSNs): Current status and major
challenges,” IEEE Access, vol. 10, pp. 23 560–23 592, 2022.

[10] S. Bera, S. Misra, and A. V. Vasilakos, “Software-defined networking for
internet of things: A survey,” IEEE Internet of Things Journal, vol. 4,
no. 6, pp. 1994–2008, 2017.

[11] H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke, “A survey
on software-defined wireless sensor networks: Challenges and design
requirements,” IEEE access, vol. 5, pp. 1872–1899, 2017.

[12] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, “Orchestra:
Robust mesh networks through autonomously scheduled TSCH,” in
Proceedings of the 13th ACM conference on embedded networked sensor
systems, 2015, pp. 337–350.

[13] M. R. Palattella, N. Accettura, L. A. Grieco, G. Boggia, M. Dohler,
and T. Engel, “On optimal scheduling in duty-cycled industrial IoT
applications using IEEE802. 15.4 e TSCH,” IEEE Sensors Journal,
vol. 13, no. 10, pp. 3655–3666, 2013.

[14] T. Watteyne, M. Palattella, and L. Grieco, “Using IEEE 802.15. 4e
Time-Slotted Channel Hopping (TSCH) in the Internet of Things (IoT):
Problem statement,” Tech. Rep., 2015.

[15] V. Kotsiou, G. Z. Papadopoulos, P. Chatzimisios, and F. Theoleyre,
“LDSF: Low-latency Distributed Scheduling Function for Industrial
Internet of Things,” IEEE Internet of Things Journal, vol. 7, no. 9,
pp. 8688–8699, 2020.

[16] S. Misra, S. Bera, M. P. Achuthananda, S. K. Pal, and M. S. Obai-
dat, “Situation-Aware Protocol Switching in Software-Defined Wireless
Sensor Network Systems,” IEEE Systems Journal, vol. 12, no. 3, pp.
2353–2360, 2017.

[17] L. L. Bello, A. Lombardo, S. Milardo, G. Patti, and M. Reno, “Exper-
imental assessments and analysis of an SDN framework to integrate
mobility management in industrial wireless sensor networks,” IEEE
Transactions on Industrial Informatics, vol. 16, no. 8, pp. 5586–5595,
2020.

[18] T. Theodorou and L. Mamatas, “SD-MIoT: A Software-Defined Net-
working Solution for Mobile Internet of Things,” IEEE Internet of
Things Journal, vol. 8, no. 6, pp. 4604–4617, 2020.

[19] T. G. Nguyen, T. V. Phan, D. T. Hoang, T. N. Nguyen, and C. So-
In, “Federated Deep Reinforcement Learning for Traffic Monitoring in
SDN-Based IoT Networks,” IEEE Transactions on Cognitive Commu-
nications and Networking, vol. 7, no. 4, pp. 1048–1065, 2021.

[20] M. U. Younus, M. K. Khan, and A. R. Bhatti, “Improving the Software-
Defined Wireless Sensor Networks Routing Performance Using Rein-
forcement Learning,” IEEE Internet of Things Journal, vol. 9, no. 5, pp.
3495–3508, 2021.

[21] H. Hajizadeh, M. Nabi, and K. Goossens, “Decentralized Configuration
of TSCH-Based IoT Networks for Distinctive QoS: A Deep Reinforce-
ment Learning Approach,” IEEE Internet of Things Journal, 2023.

[22] G. Oikonomou, S. Duquennoy, A. Elsts, J. Eriksson, Y. Tanaka, and
N. Tsiftes, “The Contiki-NG open source operating system for next
generation IoT devices,” SoftwareX, vol. 18, p. 101089, 2022.

[23] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-
Level Sensor Network Simulation with Cooja,” in Proceedings. 2006
31st IEEE conference on local computer networks. IEEE, 2006, pp.
641–648.

[24] M. Pilgrim and S. Willison, Dive into python 3. Springer, 2009, vol. 2.
[25] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C.

Liang, and D. I. Kim, “Applications of deep reinforcement learning
in communications and networking: A survey,” IEEE Communications
Surveys & Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019.

[26] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning.
PMLR, 2016, pp. 1928–1937.

[27] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[28] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel,
R. Pissard-Gibollet, F. Saint-Marcel, G. Schreiner, and J. Vandaele, “FIT
IoT-LAB: A large scale open experimental IoT testbed,” in 2015 IEEE
2nd World Forum on Internet of Things (WF-IoT). IEEE, 2015, pp.
459–464.

[29] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dor-
mann, “Stable-baselines3: Reliable reinforcement learning implementa-
tions,” Journal of Machine Learning Research, 2021.

[30] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-
generation hyperparameter optimization framework,” in Proceedings
of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining, 2019, pp. 2623–2631.

F. Fernando Jurado-Lasso (GS’18-M’21) received the Ph.D. degree in
Engineering and the M.Eng. degree in Telecommunications Engineering
both from The University of Melbourne, Melbourne, VIC, Australia, in
2020 and 2015, respectively; a B.Eng. degree in Electronics Engineering
in 2012 from the Universidad del Valle, Cali, Colombia. He is currently a
postdoctoral researcher at the Embedded Systems Engineering (ESE)
section of the Department of Applied Mathematics and Computer Sci-
ence of the Technical University of Denmark (DTU Compute).

His research interests include networked embedded systems,
software-defined wireless sensor networks, machine learning, protocols
and applications for the Internet of Things.

JURADO-LASSO et al.: ELISE: A RL FRAMEWORK TO OPTIMIZE THE SLOFTFRAME SIZE OF THE TSCH PROTOCOL IN IOT NETWORKS 15

Mohammadreza Barzegaran has been a postdoctoral research fellow
in computer science at the Technical University of Denmark since 2021.
His research is focused on the configuration of Fog computing platform
for critical control applications. His main research interests concern
Fog/Edge computing, optimization, the configuration of real-time and
safety-critical systems, and co-design of control applications for real-
time and safety-critical systems

J. F. Jurado received the Doctorate and MSc degree in Physics both
from Universidad del Valle, Cali, Colombia, in 2000 and 1986, respec-
tively; he also holds a BSc degree in Physics from the Universidad de
Nariño, Pasto, Colombia in 1984.

He is currently a Professor with the Faculty of Engineering and
Administration of the Department of Basic Science of The Universidad
Nacional de Colombia Sede Palmira, Colombia. His research interests
include nanomaterials, magnetic and ionic materials, nanoelectronics,
embedded systems and the Internet of Things. He is a senior member
of Minciencias in Colombia.

Xenofon Fafoutis (S’09-M’14-SM’20) received a PhD degree in Embed-
ded Systems Engineering from the Technical University of Denmark in
2014; an MSc degree in Computer Science from the University of Crete
(Greece) in 2010; and a BSc in Informatics and Telecommunications
from the University of Athens (Greece) in 2007. From 2014 to 2018,
he held various researcher positions at the University of Bristol (UK),
and he was a core member of SPHERE: UK’s flagship Interdisciplinary
Research Collaboration on Healthcare Technology. He is currently an
Associate Professor with the Embedded Systems Engineering (ESE)
section of the Department of Applied Mathematics and Computer
Science of the Technical University of Denmark (DTU Compute). His
research interests primarily lie in Wireless Embedded Systems as an
enabling technology for Digital Health, Smart Cities, and the (Industrial)
Internet of Things (IoT).

