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A B S T R A C T

In this paper, we consider that critical control applications and Fog applications share a Fog Computing
Platform (FCP). Critical control applications are implemented as periodic hard real-time tasks and messages
and have stringent timing and safety requirements, and require safety certification. Fog applications are
implemented as aperiodic tasks and messages and are not critical. Such applications need different approaches
to guarantee their timing and dependability requirements. We formulate an optimization problem for the joint
configuration of critical control and Fog applications, such that (i) the deadlines and Quality-of-Control (QoC)
of control applications are guaranteed at design-time, (ii) the configuration is extensible and supports the
addition of future new control applications without requiring costly re-certification, and (iii) the design-time
configuration together with the runtime Fog resource management mechanisms, can successfully accommodate
multiple dynamic responsive Fog applications. We evaluate our approach on several test cases assuming
scenarios for hosting both Fog applications and future critical control applications. The results show that our
approach generates extensible schedules which enables Fog nodes to handle Fog applications with a shorter
response time and a larger number of future control applications.
1. Introduction

Fog Computing, as an architectural means to realize the Operational
Technology (OT)/Information Technology (IT) convergence [1], has
emerged as a promising paradigm for enabling applications in vari-
ous domains such as connected vehicles [2] and the Industrial IoT
(IIoT) [3]. Other terms (e.g., Edge Computing) with similar objectives
and principles are also used for such platforms [4]. As depicted in
Fig. 1, a Fog Computing Platform (FCP) includes nodes (shown with
boxes in the figure) capable of communicating and executing computa-
tions that needs to integrate mixed-criticality applications (shown with
‘‘Apps’’ in the figure) with different timing- and safety-criticalities [2,
5], i.e., Fog Nodes (FNs), in the proximity of the ‘‘things’’ (e.g., ma-
chines) and data sources [6] to guarantee effective collaboration be-
tween the devices, nodes, and the Cloud.

This paper assumes the industrial automation has been implemented
using an FCP consisting of heterogeneous FNs with different capabil-
ities, such as [7–9]. The high-end FNs have high computation, com-
munication and storage capabilities, whose resources can be shared
by critical and non-critical applications [10]. We also assume that the
FCP uses IEEE 802.1 Time-Sensitive Networks (TSN) [11] as a deter-
ministic communication solution, as envisioned by several industrial
consortia [1]. TSN consists of a set of amendments to the IEEE 802.1
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Ethernet standard to provide features useful for real-time and safety
critical applications. TSN supports multiple traffic types, and hence, is
suitable for mixed-criticality applications running on an FCP.

At one extreme, we have the safety-critical real-time applications
that control industrial process, have to be operational even in the
case of failure, and need guaranteed control performance captured
via Quality-of-Control (QoC) metrics. Due to their safety nature, such
applications have to be certified. Certification standards require that
safety functions of different criticality levels are protected (isolated),
so they cannot influence each other [12], and the resources needed
for their operation have to be statically assigned pre-release. Any
changes in their functionality or configuration will trigger a costly re-
certification. We call these applications ‘‘critical control applications’’.
They are implemented using periodic hard real-time tasks running on
FNs and messages (transmitted as flows on the network) and they are
allocated resources via a static design-time configuration on the FNs
and the network.

At the other extreme, we have non-critical dynamic applications
that do not have stringent timing requirements. Such ‘‘Fog applica-
tions’’ implement the innovative functionality needed to realize Indus-
try 4.0 on the converged OT/IT Fog infrastructure, without jeopardizing
the performance and safety of the critical control applications. These
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Fig. 1. Fog Computing Platform: Fog Nodes (FNs, depicted with boxes), equipment
nd the Cloud are connected via network (thick lines). Mixed-criticality applications
‘‘Apps’’) are running on FNs and in the Cloud [13].

og applications are aperiodic, i.e., their arrival-time is unknown,
ut the FCP should dynamically allocate resources such that their
uality-of-service (QoS) is maximized, e.g., their response times are
educed.

Fig. 2(a) shows an example industrial use case with several robots
hat use an FCP architecture. The critical control applications are
esponsible for the operation of robots, whose tasks and flows are
mplemented on the FNs and TSN, respectively. The configuration for
hese tasks and flows is determined at design-time such that it ensures
he correct functionality of the critical control applications. We con-
ider that the system engineers would like to deploy a set of innovative
og applications for data analytics to optimize the industrial processes.
hey are deployed on the FCP via one of the FNs or from the Cloud.
lso, we assume that at some time in the future, there is a need for
xtending the robot control, e.g., via an updated pathfinder algorithm,
ee Fig. 2(b). To minimize safety assurance costs, the new robot control
hould be added to the FCP without modifying the existing config-
ration, since modifications may trigger a costly re-certification. In
ddition, the Fog applications must run on the FCP at runtime without
odifying the statically defined configuration for the control tasks

nd flows. Therefore, the static configuration should be extensible:
esources for possible extensions of critical control applications have
o be added pre-release and the resources that Fog applications use at
untime should be allocated at design-time.
Problem Definition: In this paper, we address the configuration

f an FCP to support both critical control applications and Fog ap-
lications. We consider these two extremes because they will drive
olutions that can support a wider range of applications. As we discuss
n Section 6 that covers the related work, researchers have proposed

plethora of methods for the configuration of, on the one hand,
ritical control applications [5], and, on the other hand, Fog appli-
ations [14]. The state-of-the-art is to over-provision resources for
ritical control applications. These extra resources are often unused and
asted. Furthermore, it is costly to allow the addition of new safety

unctions without modifying the existing configurations by using the
xtra resources. However, their joint configuration has received limited
ttention [15] and the extensibility has not been addressed yet for FCPs
hat also need to accommodate Fog applications at runtime.

We consider that the critical control applications are configured
t design-time and the Fog applications are handled via scheduling
ervers and configured at runtime using migration mechanisms which
ill decide the mapping of tasks and flows to the resources of the
CP available after the configuration of control applications. The FCP
onfiguration consists of: (i) the mapping of critical control tasks to
2

he cores of the FNs, (ii) the routing of critical control flows, (iii) the
schedule tables for critical control tasks and flows, (iv) the slack in
these schedule tables to increase their flexibility, and (v) the period
and budget of the scheduling servers that allocate resources at runtime
to the Fog applications. We formulate an optimization problem for
the FCP configuration, such that (1) the deadlines and QoC of control
applications are guaranteed at design-time, (2) the design-time FCP
configuration is extensible and supports the addition of a larger number
of future new control applications, and (3) the design-time configura-
tion together with the runtime Fog resource management mechanisms,
can successfully accommodate responsive Fog applications.

Contributions: The contributions of this paper are as follows. We
motivate the need for supporting dynamic changes in an FCP to reduce
the re-certification costs and increase productivity and the need for
a novel FCP configuration optimization approach for mixed-criticality
applications. Although the vision is to use partitioning to enforce
the spatial and temporal isolation between applications with different
criticalities in FCP, we ignored separation in this paper. However, our
solution can be extended to include separation. We use a hierarchi-
cal scheduling model (Section 2.4) that can accommodate multiple
scheduling policies, targeting the different time-criticality requirements
of applications. The critical control applications are statically scheduled
using static cyclic scheduling (i.e., they are time-triggered) and the
resources of the Fog applications are allocated at runtime via fixed-
priority servers that are dimensioned at design-time jointly with the
critical application configurations. We consider that the critical control
applications use Scheduled Traffic (ST) for their flows, implemented via
IEEE 802.1Qbv, which defines a Time-Aware Shaper (TAS) mechanism
that enables the scheduling of flows based on a global schedule table.
The flows of the Fog applications use Strict Priority (SP) flows that are
sent with lower priority in the gaps of the ST traffic schedule tables.

We formulate an optimization problem for the joint configuration
of critical control and Fog applications, such that (1) the deadlines
and QoC of control applications are guaranteed at design-time, (2) the
design-time FCP configuration is extensible and supports the addition
of a larger number of future new control applications, and (3) the
design-time configuration together with the runtime Fog resource man-
agement mechanisms, can successfully accommodate responsive Fog
applications.

We propose a Constraint Programming (CP)-based optimization
strategy to synthesize the optimized FCP configuration. Synthesizing
a design-time configuration means deciding: (i) the mapping of critical
control tasks to the cores of the FNs, (ii) the routing of critical control
flows, (iii) the schedule tables for critical control tasks and flows, (iv)
the slack in these schedule tables to increase their flexibility, and (v) the
period and budget of the fixed-priority servers that allocate resources
at runtime to the Fog applications. At runtime, our approach handles
(vi) the migration of Fog tasks to the FNs that have resources for their
execution, (vii) the scheduling of Fog tasks on the servers and of flows
on TSN. We evaluate our CP approach on several synthetic and realistic
test cases.

The novelty of this paper is the optimization solution which gen-
erates design time configuration of FCP to statically allocate resources
for dynamical changes. These dynamical changes are in the form of
future critical control applications and Fog applications. The allo-
cated resources are used by fixed-priority servers to accommodate
dynamic applications. The proposed solution optimizes the dimension
of the allocated resources for providing better QoS for the dynamic
applications.

The rest of the paper is structured as follows. Section 2 presents
our underlying system model, and Section 3 presents the problem
formulation. Afterwards, we present our configuration approach in
Section 4, and evaluate the performance of our proposed approach in
Section 5. Finally, Section 6 describes the related work, and Section 7

concludes the paper.
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Fig. 2. An FCP hosting Fog applications and future control applications at runtime.
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2. System models

The FCP model is presented in Section 2.1, and in Section 2.2 we
present how TSN works for scheduled and strict priority traffic. The
critical control and Fog application models are presented in Section 2.3
and Section 2.4 presents the scheduling policies used to jointly schedule
these mixed-criticality applications. The summary of the notation is
presented as an appendix.

2.1. Architecture model

We mode the architecture as a directed graph  = { , }, where  =
𝐄𝐒

⋃

𝐒𝐖 is the set of vertices and  ⊆  ×  is the set of edges. We
model an architecture node as a vertex 𝜈𝑖 ∈  in the network graph.
3

A node in the architecture is either an end-system (ES) (e.g., an FN, a p
sensor, an actuator, or a machine), or a network switch (SW). An ES is
either the source (talker) or the destination (listener) of an application
flow, whereas an SW forwards the frames of flows. Each architecture
node has a set of input (ingress) ports and a set of output (egress) ports
(denoted with 𝜈𝑖.𝑃 ). A port 𝑝𝑗 ∈ 𝜈𝑖.𝑃 is linked to at most one other
node. We denote the set of all FNs with  ⊂  . Each FN 𝑁𝑖 ∈  has
a multicore processor, and each core is denoted by 𝑗 ∈ 𝑁𝑖.𝐶.

We model the architecture bi-directional full-duplex physical links
as a set edges  in the network graph. Thus, a full-duplex link between
the nodes 𝜈𝑖 and 𝜈𝑗 is denoted with both 𝜖𝑖,𝑗 ∈  and 𝜖𝑗,𝑖 ∈  ; a link is
ttached to one port of the node 𝜈𝑖 and one port of the node 𝜈𝑗 .

The link 𝜖𝑖,𝑗 is defined with the tuple ⟨𝑠, 𝑑⟩ denoting the speed of
he link in Mbit/s and the propagation delay function of the link in ms.
he propagation delay of a frame on a link 𝜖𝑖,𝑗 .𝑑 is calculated based the

hysical medium and the link length.
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Fig. 3. Example architecture with three end-systems and two switches: The orange
ox shows the hierarchical scheduling model; the purple box shows the migration
echanism [16], all inside the node 𝜈1. (For interpretation of the references to colour

n this figure legend, the reader is referred to the web version of this article.)

A route 𝑟𝑖 ∈ , where  is a set of routes, is an ordered list of links,
tarting with a link originating from a talker node, and ending with a
ink to a listener node. The number of links in the route 𝑟𝑖 is denoted
ith |𝑟𝑖|, and it starts from 2 since we assume there is at least one SW

n the route. We define the function 𝐮 ∶  × N0 →  to capture the 𝑗𝑡ℎ
ink of the route 𝑟𝑖.

An architecture model with three ESs (consisting of one FN and two
ensors) and two SWs is presented in Fig. 3, where the thick lines are
hysical links. We also show in the figure examples on how the notation
s used. The FCP is envisioned to host mixed-criticality applications
hich have to be separated from each other [7]. The separation is

ealized via temporal and spatial partitioning implemented via hyper-
isors [15] which has not been considered in this paper. However,
eparation can be introduced as additional constraints in our proposed
P model.

Additionally, the FCP is envisioned to handle Fog applications via
onitoring and resource management techniques [7]. Once Fog appli-

ations are submitted to run on the FCP, the Fog controller FN, which
is determined at runtime using mechanisms such as [17], receives the
submission request. The Fog controller has knowledge on the available
resources on the FNs and SWs using the resource discovery algorithms
such as [17–19] at runtime. It can decide on the placement of ap-
plication tasks on the FNs using a decentralized resource allocation
technique [16,20] which determines the FN that provides the minimum
response time for the application using response time analysis such
as [21]. The fog controller also decides the routing of flows using a
routing algorithm such as [22] considering the available resources on
SWs at runtime. The scheduling policies used in the FCP are discussed
in Section 2.4.

2.2. TSN switch model

Fig. 4 presents the architecture of a TSN switch. Switches are
responsible for routing flows from input (ingress) ports to output
(egress) ports. The flows are stored in the queues of egress ports before
4

i

transmission. An egress port 𝑝𝑖 has a set of (typically) eight priority
queues 𝑝𝑖.𝑄 ∈ 𝑝𝑖.𝑄, c.f. the IEEE 802.1Q standard [23].

We consider that the switches implement the 802.1Qbv standard,
which uses ‘‘gates’’ for each queue and relies on a predefined Gate
Control List (GCL) that controls the opening and closing time of the
queue gates. With 802.1Qbv, the flows in a queue can be transmitted
when a gate is open and cannot be transmitted when gate is closed. This
requires a clock synchronization mechanism, e.g., 802.1ASrev [24] to
define a ‘‘global’’ notion of time.

The flows of the critical control applications use Scheduled Traffic
(ST) that is sent according to the predefined GCLs, and have higher
priority. The flows of the Fog applications are sent in lower priority
queues in the gaps of the ST traffic GCLs according to a Strict Priority
(SP) FIFO scheme. Thus, ST flows use a subset of high priority queues,
depicted with red in Fig. 4, and SP flows use a subset of lower priority
queues, depicted with orange. The lowest priority queues (depicted
with white) are for the best effort, which does not require any timing
guarantees.

In this paper we assume that the GCLs are deterministic, i.e., the
flows are isolated from each other: Only the frames of one of the flows
are present in a queue at a time, see [25] for details. Flows of Fog
applications are lower priority and are sent based on their priorities in
the intervals of time (also called windows) when the respective queue
gates are open, i.e., when ST flows are not scheduled.

To this end, we define a periodic window 𝑊𝑝𝑗 on each port of
the network nodes 𝑝𝑗 ∈ 𝜈𝑖.𝑃 . Each window is characterized by the
tuple ⟨𝑐, 𝑡⟩ denoting the capacity (i.e., the length within a period) and
period of the window in ms. Additionally, each window will have
several instances which are referred to as window slices, in a hyper-
period 𝐻 (which is the system cycle, see Section 2.3). We associate
each window slice 𝑊 𝑗

𝑝𝑖 with its start time 𝜙.

.3. Application model

There have been several application models proposed in the lit-
rature, depending on the periodicity and time-criticality of the ap-
lications [26]. Our application model consists of (i) a set of critical
ontrol applications considered at design-time, denoted with 𝛤 , which
e capture using a periodic hard real-time task model, and (ii) a set of
og applications considered at runtime, denoted with 𝛤 ′, for which we
se an aperiodic best-effort task model.

Critical control applications consist of tasks which exchange mes-
ages and implement control functions for controlling dynamical sys-
ems, see [15] for more details. All tasks and messages in a critical
ontrol application are periodic, can be of different periods [27], and
ave multiple periods [15]. However, without the loss of generality we
ssume that they have the same period. Thus, we define a hyperpe-
iod 𝐻 which is a system cycle and equal to the least common multiple
f all application periods. Each critical control application 𝛾𝑖 ∈ 𝛤 is
odelled with a directed acyclic graph (DAG), where a node represents

ither a task or a message, and edges represent data exchange between
he nodes. The set of all tasks and the set of all flows in a critical control
pplication are denoted with 𝛾𝑖. and 𝛾𝑖. respectively.

A critical task 𝜏𝑗 ∈ 𝛾𝑖. is characterized by the tuple ⟨𝑡, 𝑑, 𝑐⟩ denoting
he task period, the task deadline and a known Worst-Case Execution
ime (WCET) on the mapped FN in ms. Each task is ready to execute
hen all its inputs have arrived. The output of a task is produced upon

he termination of the task. The mapping of tasks to the cores of FNs
s captured by the function  which is determined by our proposed

scheduling algorithm. The task 𝜏𝑖 will have 𝐻∕𝜏𝑖.𝑡 instances denoted
ith |𝜏𝑖| in a hyperperiod 𝐻 which are referred to as jobs denoted
ith 𝜏𝑗𝑖 . A job is associated with 𝜙 denoting the start time of the job.

A critical flow 𝑓𝑖 ∈ 𝛾𝑖. is responsible for sending the frames that
ncapsulate the data from an application and it is characterized by
he tuple ⟨𝑝, 𝑐, 𝑡, 𝑑⟩ denoting the priority, the size in bytes, the period

n ms, inherited from the originating task period, and the flow deadline,
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Fig. 4. TSN switch internals [13].
Fig. 5. Example application model with one critical control application and one Fog
application.

i.e., the maximum allowed end-to-end delay in ms. Depending on the
period, the frames of a flow will have to be transmitted multiple
times within a hyperperiod, and we refer to each such transmission
as an instance of a flow. The number of instances for a flow 𝑓𝑖 is
denoted with |𝑓𝑖|, and is derived from the period of the flow 𝑡 and the
hyperperiod 𝐻 .

Each flow 𝑓𝑖 is transmitted via a route 𝑟𝑗 which is captured by the
function 𝐳 ∶  →  that maps the flows to the routes. We assume that
each flow is associated to only one route, but several flows may share
the same route. We also assume that the flows are unicast, i.e., there is
only one listener for a flow. Our model can easily be extended to handle
multicast flows, i.e., that have multiple listeners. We define a frame for
each instance 1 ≤ 𝑚 ≤ |𝑓𝑖| of the flow 𝑓𝑖 and on each link 1 ≤ 𝑘 ≤ |𝑟𝑗 |
of the route 𝑟𝑗 , and denote it with 𝑓𝑘

𝑖,𝑚. A frame 𝑓𝑘
𝑖,𝑚 is associated with

𝜙 denoting the start time of the frame.
Each Fog application 𝛾 ′𝑖 ∈ 𝛤′ consists of a set of aperiodic tasks and a

set of aperiodic flows denoted by 𝛾 ′𝑖 . and 𝛾 ′𝑖 . , respectively. The tasks
do not have data dependencies, i.e., a task will start when it arrives,
but they may exchange data asynchronously using flows. A Fog task
𝜏′𝑗 ∈ 𝛾 ′𝑖 . is denoted by the tuple ⟨𝑐, 𝑗⟩ denoting the workload (which
is the average execution time) on the mapped core of FNs in ms and
its arrival time in ms. The arrival times and workloads of Fog tasks are
unknown at design time. A Fog flow 𝑓 ′

𝑗 ∈ 𝛾 ′𝑖 . is also aperiodic. Such
a flow is denoted by the tuple ⟨𝑐, 𝑗⟩ denoting the size in bytes and the
arrival time in ms.
5

An example application model composed of two applications is
shown in Fig. 5. 𝛾1 is a critical control application and 𝛾 ′1 is a Fog
application. The task and flow details are given in the figure.

2.4. Scheduling policies

Mixed-criticality applications require different scheduling policies
depending on their timing criticality [28]. Similar to related work, we
use static cyclic scheduling (timeline scheduling) for critical control
applications, since this is a scheduling policy suited for hard real-time
applications in safety-critical areas. To put together several scheduling
policies we use the hierarchical scheduling model [29], which consists
of several levels of schedulers, starting at level 1 where a single
scheduler reserves resources to applications and schedulers at the next
level, i.e., level 2 [30]. Because the hierarchical scheduling model is
general, we can accommodate any combination of schedulers needed
by the mixed-criticality applications, in-between the two extremes: the
static scheduling of critical control applications versus the dynamic
scheduling of Fog applications.

Our scheduling model employs a static scheduler at level 1 for
scheduling control applications and a periodic fixed priority server at
level 2. The scheduler at level 1 uses a static cyclic scheduling, also
known as time-triggered or timeline scheduling [28]. A static cyclic
schedule captures the start and finishing time of tasks and flows and
repeats with the hyperperiod 𝐻 .

A fixed priority server is implemented as a periodic task 𝐷𝑖 that
runs in a core 𝑖 and it is characterized by the tuple ⟨𝑐, 𝑡⟩ denoting the
capacity of the server (i.e., the length of the server within a period)
and the period of the server in ms. Within a hyperperiod 𝐻 , a server
will have several instances which are referred to as server slices. Since
level 1 uses static cyclic scheduling, the servers have to be scheduled in
the static schedule at design-time together with the control tasks. Each
server slice is denoted by 𝐷𝑗

𝑖
and is associated with 𝜙 denoting its start

time.
We consider that the aperiodic Fog tasks are served by such servers,

and we use a deferrable server [31], which uses soft resource reserva-
tion techniques to allocate its resources to the Fog tasks. The servers
serving aperiodic Fog tasks will use the slack introduced in the task
schedule tables. We refer to the slack with the same notation used for
the fixed priority server, and use them interchangeably.

Fog application flows are transmitted using the TSN mechanisms
specific for SP flows in the windows when ST critical flows are not
scheduled, see Section 2.2. These windows are similar to the slack in
flow schedule tables.
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3. Problem definition

We formally define the extensibility-aware configuration problem
we address in the paper as follows, see Fig. 2(b) for an illustration.
Given (1) a set of critical control applications 𝛤 , (2) an FCP modelled
with an architecture graph , we want to determine a configuration 𝛹
consisting of: (i) the mapping  of critical control tasks to the cores
f the FNs, (ii) the set of routes  of critical control flows, (iii) the

static task schedule tables, (iv) the GCLs, (v) the period and capacity of
port windows 𝑊𝑝𝑖 , and (vi) the period and capacity of the deferrable
servers 𝐷𝑖 . At runtime, our approach handles (vii) the migration of
Fog tasks to the FNs that have resources for their execution, (viii) the
scheduling of Fog tasks on the servers and of their flows on TSN.

We are interested in an optimized configuration 𝛹 such that: the
deadlines of all the critical control applications are met, the QoC
of control applications, as defined in Section 4.3, is maximized, and
the extensibility of the configuration 𝛹 is maximized, which supports
dding future control applications without modifications to 𝛹 and
nables shorter response times for Fog applications.

Given a mapping , a static task schedule for the cores of FNs
ncludes (i) the critical control task offsets 𝜏𝑗𝑖 .𝜙, and (ii) the server

slices’ offsets 𝐷𝑗
𝑖
.𝜙. Additionally, GCLs for the ports of network nodes

includes (i) the critical frames’ offsets 𝑓𝑘
𝑖,𝑚.𝜙, and (ii) the window

offsets 𝑊 𝑗
𝑝𝑖 .𝜙.

4. Proposed solution

In this section, first, we describe our configuration optimization
approach in detail and present an overview of the objective, a valid
solution, and the extensibility metrics. Afterwards, we present the
CP model and the CP constraints we use to solve the problem, in
Sections 4.1 4.2, respectively. Finally, we define the objective func-
tion in Section 4.3 and present our heuristic search methodology in
Section 4.4.

Just the scheduling problem, in even simpler contexts, has been
proved to be Non-deterministic Polynomial time (NP)–complete in
the strong sense [32,33]. We propose an optimization strategy called
Extensible Configuration Optimization Strategy (ECOS), based on a CP
formulation that uses search heuristics inside the CP solver, aiming
at finding solutions even for large problem sizes. Fig. 6 presents an
overview of ECOS which takes as the inputs the architecture model,
and the application model; and outputs a set of the best solutions found
during search.

As mentioned, ECOS is based on a CP formulation. CP is a declar-
ative programming paradigm that has been widely used to solve a
variety of optimization problems such as scheduling, routing, and
resource allocations. With CP, a problem is modelled through a set
of variables and a set of constraints. Each variable has a finite set of
values, called domain, that can be assigned to it (see Section 4.1).
Constraints restrict the variables’ domains by bounding them to a range
of values and defining relations between the domains of different vari-
ables (see Section 4.2). The search aims to find good quality solutions
in a reasonable time, but it does not guarantee the optimality.

ECOS visits solutions that satisfy the constraints defined in Sec-
tion 4.2 which are all valid solutions; and evaluates them using the
objective function defined in Section 4.3 to check if the solution is
an improving solution, i.e., better than the best solutions found so far.
The objective function introduces metrics for extensibility and QoC.
In an extensible solution, the slack is distributed in a way that is
periodic, uniform and starts early within a period. Moreover, in a
good QoC solution, the input–output jitter of a critical control appli-
cation, i.e., variation in the end-to-end response of the application, is
minimized.

By default, the CP solver systematically performs an exhaustive
search by exploring all the possibilities of assigning different values to
the variables. However, such a search is intractable for NP-complete
problems, therefore we instead employ a metaheuristic which speeds
up the search and helps finding the optimal solution in a shorter time,
6

see Section 4.4.
Fig. 6. Overview of ECOS.

4.1. CP model

We define seven sets of decision variables for the CP model. Each
decision variable is associated with a domain from which the CP solver
decides the variable’s value. The decision variables and their domain
for flows and windows are defined by

∀𝛾𝑖 ∈ 𝛤 ,∀𝑓𝑗 ∈ 𝛾𝑖. ,∀𝑚 ∈ [1,… , |𝑓𝑗 |],

∀𝑙 ∈ [1,… , |𝑟𝑘|], 𝑟𝑘 = 𝐳(𝑓𝑗 ), 𝜖𝑣,𝑤 = 𝐮(𝑟𝑘, 𝑙) ∶
0 ≤ 𝑓𝑘

𝑗,𝑚.𝜙 × 𝜖𝑣,𝑤.𝑠 ≤ (𝑓𝑗 .𝑡 × 𝜖𝑣,𝑤.𝑠 − 𝑓𝑗 .𝑐)

∀𝜈𝑖 ∈  ,∀𝑝𝑗 ∈ 𝜈𝑖.𝑃 ,∀𝑚 ∈ [1,… ,𝐻∕𝑊𝑝𝑗 .𝑡] ∶

0 ≤ 𝑊 𝑚
𝑝𝑗
.𝜙 ≤ (𝑊𝑝𝑗 .𝑡 −𝑊𝑝𝑗 .𝑐)

(1)

where, the frame offsets’ domain is the range of 0 to the time point
when the frame has enough time to be transmitted within the frame
period. The domain for window slice offsets is in the range of 0 to the
time point when the slice accesses its capacity within its period.

For task scheduling, the decision variables are associated with the
job offsets and the server slice offsets on cores of FNs. The variables
and their domains are defined in Eq. (2) where the job offsets’ domain
is in the range from 0 to the time point when a duration equal to job’s
WCET is left within its period. Similarly, the domain for server slice
offsets is in the range of 0 to the time point when the slice accesses its
capacity within its period.

∀𝛾𝑖 ∈ 𝛤 ,∀𝜏𝑗 ∈ 𝛾𝑖. ,∀𝑚 ∈ [1,… , |𝜏𝑖.𝑡|] ∶

0 ≤ 𝜏𝑚𝑗 .𝜙 ≤ (𝜏𝑗 .𝑡 − 𝜏𝑗 .𝑐)

∀𝑁𝑖 ∈  ,∀𝑗 ∈ 𝑁𝑖.𝐶,∀𝑚 ∈ [1,… ,𝐻∕𝐷𝑗 .𝑡] ∶

0 ≤ 𝐷𝑚
𝑗
.𝜙 ≤ (𝐷𝑗 .𝑡 −𝐷𝑗 .𝑐)

(2)

The mapping function  which captures the mapping of tasks to
the cores of FNs is also defined as a decision variable. The domain and
the co-domain of the function is defined in Eq. (3) where the function
domain is the set of all tasks in the application model and the function
co-domain is the set of all cores of FNs.
 ∶ 𝑋 ⟶ 𝑌 ∶

𝑋 = {𝜏𝑖|𝜏𝑖 ∈ 𝛾𝑗 . , 𝛾𝑗 ∈ 𝛾} 𝑌 = {𝑖|𝑖 ∈ 𝑁𝑗 .𝐶,𝑁𝑗 ∈  }
(3)

4.2. CP constraints

Flow Constraints: We define five constraints similar to [13] that
regulate the network traffic and relate the domain of the CP variables.
CP only finds the feasible solutions, i.e., those where all the constraints
are met.
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The Link Overlap constraint does not allow sharing link resources
ith more than one frame or slice at a time, see Eq. (4) for the
efinition. As already mentioned in Section 2.1 a port is equivalent to a
ink, since a link is attached to only one source port and one destination
ort.

𝛾𝑖, 𝛾𝑗 ∈ 𝛤 ,∀𝑓𝑘 ∈ 𝛾𝑖. ,∀𝑓𝑙 ∈ 𝛾𝑗 . , 𝑘 ≠ 𝑙,

∀𝑚 ∈ [1,… , |𝑓𝑘|],∀𝑛 ∈ [1,… , |𝑓𝑙|],

𝑟𝑜 = 𝐳(𝑓𝑘),∀𝑞 ∈ [1,… , |𝑟𝑜|], 𝑟𝑝 = 𝐳(𝑓𝑙),∀𝑥 ∈ [1,… , |𝑟𝑝|],

𝑝𝑣,𝑤 ≡ 𝜖𝑣,𝑤 = 𝐮(𝑟𝑜, 𝑞) = 𝐮(𝑟𝑝, 𝑥),
∀𝑦 ∈ [1,… ,𝐻∕𝑊𝑝𝑣,𝑤 .𝑡] ∶

((𝑓 𝑞
𝑘,𝑚.𝜙 + 𝑚 × 𝑓𝑘.𝑡 ≥ 𝑓𝑥

𝑙,𝑛.𝜙 + 𝑛 × 𝑓𝑙 .𝑡 +
𝑓𝑙 .𝑐
𝜖𝑣,𝑤.𝑠

)∨

(𝑓𝑥
𝑙,𝑛.𝜙 + 𝑛 × 𝑓𝑙 .𝑡 ≥ 𝑓 𝑞

𝑘,𝑚.𝜙 + 𝑚 × 𝑓𝑘.𝑡 +
𝑓𝑘.𝑐
𝜖𝑣,𝑤.𝑠

))∧

(𝑓 𝑞
𝑘,𝑚.𝜙 + 𝑚 × 𝑓𝑘.𝑡 ≥ 𝑊 𝑦

𝑝𝑣,𝑤
.𝜙 + 𝑦 ×𝑊𝑝𝑣,𝑤 .𝑡 +𝑊𝑝𝑣,𝑤 .𝑐)∨

𝑊 𝑦
𝑝𝑣,𝑤

.𝜙 + 𝑦 ×𝑊𝑝𝑣,𝑤 .𝑡 ≥ 𝑓 𝑞
𝑘,𝑚.𝜙 + 𝑚 × 𝑓𝑘.𝑡 +

𝑓𝑘.𝑐
𝜖𝑣,𝑤.𝑠

))

(4)

The Route constraint is defined to ensure that a frame is propagated
from its talker to its listener via its associated route. As defined in
Eq. (5), 𝛿 is the network precision that is the worst-case difference
between the nodes clock in the network according to the 802.1AS clock
synchronization mechanism [24].

∀𝛾𝑖 ∈ 𝛤 ,∀𝑓𝑗 ∈ 𝛾𝑖. ,∀𝑚 ∈ [1,… , |𝑓𝑗 |],∀𝑘 ∈ [1,… , |𝑟𝑙|),

𝑙 = 𝐳(𝑓𝑗 ), 𝜖𝑣,𝑤 = 𝐮(𝑟𝑙 , 𝑘), 𝜖𝑤,𝑥 = 𝐮(𝑟𝑙 , (𝑘 + 1)) ∶

𝑓𝑘+1
𝑗,𝑚 .𝜙 ≥ 𝑓𝑘

𝑗,𝑚.𝜙 +
𝑓𝑗 .𝑐
𝜖𝑣,𝑤.𝑠

+ 𝜖𝑣,𝑤.𝑑 + 𝛿.

(5)

The Isolation constraint, as defined in Eq. (6) ensures displacements
f frames in switches. The constraint checks frames with the same
riority arriving at an ingress port of a switch at the same time. The
onstraint allows either a frame to arrive after or before any other
rames on the same link, or frames having different priority on the same
ink to arrive at the same time. See [25] for more details on the order
f frame transmission in the switch schedules. The 𝛿 in Eq. (6) presents

the network precision.

∀𝛾𝑖, 𝛾𝑗 ∈ 𝛤 ,∀𝑓𝑘 ∈ 𝛾𝑖. ,∀𝑓𝑙 ∈ 𝛾𝑗 . , 𝑘 ≠ 𝑙,

∀𝑚 ∈ [1,… , |𝑓𝑘|],∀𝑛 ∈ [1,… , |𝑓𝑙|],

𝑟𝑜 = 𝐳(𝑓𝑘),∀𝑞 ∈ (1,… , |𝑟𝑜|], 𝑟𝑝 = 𝐳(𝑓𝑙),∀𝑥 ∈ (1,… , |𝑟𝑝|],

𝜖𝑣,𝑤 = 𝐮(𝑟𝑜, 𝑞) = 𝐮(𝑟𝑝, 𝑥),
𝜖𝑎,𝑣 = 𝐮(𝑟𝑜, 𝑞 − 1), 𝜖𝑏,𝑣 = 𝐮(𝑟𝑝, 𝑥 − 1) ∶

((𝑓 𝑞
𝑘,𝑚.𝜙 + 𝑚 × 𝑓𝑘.𝑡 + 𝛿 ≤ 𝑓𝑥−1

𝑙,𝑛 .𝜙 + 𝑛 × 𝑓𝑙 .𝑡 + 𝜖𝑏,𝑣.𝑑)∨

(𝑓𝑥
𝑙,𝑛.𝜙 + 𝑛 × 𝑓𝑙 .𝑡 + 𝛿 ≤ 𝑓 𝑞−1

𝑘,𝑚 .𝜙 + 𝑚 × 𝑓𝑘.𝑡 + 𝜖𝑎,𝑣.𝑑))∨

(𝑓𝑘.𝑝 ≠ 𝑓𝑙 .𝑝).

(6)

The Flow Deadline constraint is defined in Eq. (7) to ensure that a
flow in delivered to its listener before its deadline is passed. To this
end, the time interval between the transmission of a frame from its
talker and the reception of the frame by its listener must be smaller
than its deadline.
∀𝛾𝑖 ∈ 𝛤 ,∀𝑓𝑗 ∈ 𝛾𝑖. ,∀𝑚 ∈ [1,… , |𝑓𝑗 |], 𝑟𝑛 = 𝐳(𝑓𝑗 ),
𝜖𝑎,𝑏 = 𝐮(𝑟𝑛, 1), 𝜖𝑦,𝑧 = 𝐮(𝑟𝑛, |𝑟𝑛|) ∶

𝑓 1
𝑗,𝑚.𝜙 + 𝑓𝑗 .𝑑 ≥ 𝑓 |𝑟𝑛|

𝑗,𝑚 .𝜙 +
𝑓𝑗 .𝑐
𝜖𝑦,𝑧.𝑠

.

(7)

Task Constraints: We define three constraints for task scheduling
on cores of FNs in the architecture model which relates the domain of
the CP variables. A feasible solution meets all the constraints.

The Core utilization constraint avoids over utilization of cores. The
constraint is defined in Eq. (8) where the utilization of all tasks and the
7

server mapped to the same core is calculated.

∀𝑁𝑖 ∈  ,∀𝑗 ∈ 𝑁𝑖.𝐶,  = {𝜏𝑘|(𝜏𝑘) = 𝑗 , 𝜏𝑘 ∈ 𝛾𝑙 , 𝛾𝑙 ∈ 𝛤 } ∶

𝐷𝑗 .𝑐

𝐷𝑗 .𝑡
+

𝜏∈
∑

( 𝜏.𝑐
𝜏.𝑡

) ≤ 1
(8)

The Task Overlap constraint imposes the restriction on the solution
not to allow a core to run more than one job or server slice at a time.
The constraint is defined in Eq. (4).

∀𝛾𝑖, 𝛾𝑗 ∈ 𝛤 ,∀𝜏𝑘 ∈ 𝛾𝑖. ,∀𝜏𝑙 ∈ 𝛾𝑗 . , 𝑘 ≠ 𝑙,

∀𝑚 ∈ [1,… , |𝜏𝑖.𝑡|],∀𝑛 ∈ [1,… , |𝜏𝑖.𝑡|],

𝑜 = (𝜏𝑘) = (𝜏𝑙),∀𝑦 ∈ [1,… ,𝐻∕𝐷𝑜 .𝑡] ∶

((𝜏𝑚𝑘 .𝜙 + 𝑚 × 𝜏𝑘.𝑡 ≥ 𝜏𝑛𝑙 .𝜙 + 𝑛 × 𝜏𝑙 .𝑡 + 𝜏𝑙 .𝑐)∨

(𝜏𝑛𝑙 .𝜙 + 𝑛 × 𝜏𝑙 .𝑡 ≥ 𝜏𝑚𝑘 .𝜙 + 𝑚 × 𝜏𝑘.𝑡 + 𝜏𝑘.𝑐))∧

((𝜏𝑚𝑘 .𝜙 + 𝑚 × 𝜏𝑘.𝑡 ≥ 𝐷𝑦
𝑜
.𝜙 + 𝑦 ×𝐷𝑜 .𝑡 +𝐷𝑜 .𝑐)∨

(𝐷𝑦
𝑜
.𝜙 + 𝑦 ×𝐷𝑜 .𝑡 ≥ 𝜏𝑚𝑘 .𝜙 + 𝑚 × 𝜏𝑘.𝑡 + 𝜏𝑘.𝑐))

(9)

The Deadline constraint defined in Eq. (10) imposes the restriction
that a job produces its outputs within its deadline.

∀𝛾𝑖 ∈ 𝛤 ,∀𝜏𝑗 ∈ 𝛾𝑖. ,∀𝑚 ∈ [1,… , |𝜏𝑗 .𝑡|] ∶

𝜏𝑚𝑖 .𝜙 + 𝜏𝑖.𝑐 ≤ 𝜏𝑖.𝑑.
(10)

Application Constraints: We define four constraints for handling
the data dependency between tasks and flows of an application which
is modelled with a DAG, see Section 2.3. To this end, we define four
functions capturing the task and flow precedence.

The function  
𝜏 ∶ 𝛾. ⟶ 𝛾. takes an application task as the input

and returns a set of tasks which have precedence over the input task
within the same application. Similarly, the function  

𝜏 ∶ 𝛾. ⟶ 𝛾.
akes an application task as the input and returns a set of flows, the
unction  

𝑓 ∶ 𝛾. ⟶ 𝛾. takes an application flow as the input and
eturns a set of tasks, and the function  

𝑓 ∶ 𝛾. ⟶ 𝛾. takes an
pplication flow as the input and return a set of flows, all within the
ame application.

The Task Precedence over Task constraint is defined in Eq. (11)
nd enforces that in an application and within a period, each task is
xecuted after all the tasks determined by the function  

𝜏 produce
heir outputs.

𝛾𝑖 ∈ 𝛤 ,∀𝜏𝑗 ∈ 𝛾𝑖. ,∀𝜏𝑘 ∈  
𝜏 (𝜏𝑗 ),

𝑙 ∈ [1,… , |𝜏𝑗 .𝑡|],∀𝑚 ∈ [1,… , |𝜏𝑘.𝑡|] ∶

𝜏𝑙𝑗 .𝜙 ≥ 𝜏𝑚𝑘 .𝜙 + 𝜏𝑘.𝑐

(11)

The flows’ precedence over each task is regulated using the Flow
Precedence over Task constraint defined in Eq. (12). The constraint
avoids executing each task before all the flows decided by the func-
tion  

𝜏 have arrived, within a period.

∀𝛾𝑖 ∈ 𝛤 ,∀𝜏𝑗 ∈ 𝛾𝑖. ,∀𝑓𝑘 ∈  
𝜏 (𝜏𝑗 ),

∀𝑙 ∈ [1,… , |𝜏𝑗 .𝑡|],∀𝑚 ∈ [1,… , |𝑓𝑘.𝑡|],

𝑟𝑜 = 𝐳(𝑓𝑘), 𝜖𝑎,𝑏 = 𝐮(𝑟𝑜, |𝑟𝑜|) ∶

𝜏𝑙𝑗 .𝜙 ≥ 𝑓 |𝑟𝑜|
𝑘,𝑚 .𝜙 +

𝑓𝑘.𝑐
𝜖𝑎,𝑏.𝑠

(12)

Similarly, the Task Precedence over Flow constraint defined in
Eq. (13) regulates the precedence of tasks determined by the func-
tion  

𝑓 over each flow. Upon the output production of all determined
asks, the flow is scheduled for transmission.

𝛾𝑖 ∈ 𝛤 ,∀𝑓𝑗 ∈ 𝛾𝑖. ,∀𝜏𝑘 ∈  
𝑓 (𝑓𝑗 ),

∀𝑙 ∈ [1,… , |𝑓𝑗 .𝑡|],∀𝑚 ∈ [1,… , |𝜏𝑘.𝑡|],

𝑟𝑜 = 𝐳(𝑓𝑗 ), 𝜖𝑎,𝑏 = 𝐮(𝑟𝑜, 1) ∶
1 𝑚

(13)
𝑓𝑗,𝑙 .𝜙 ≥ 𝜏𝑘 .𝜙 + 𝜏𝑘.𝑐
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Eq. (14) defines the Flow Precedence over Flow constraint which
regulates the transmission of a flow that is data dependent to a set of
flows determined by the function  

𝑓 .

∀𝛾𝑖 ∈ 𝛤 ,∀𝑓𝑗 ∈ 𝛾𝑖. ,∀𝑓𝑘 ∈  
𝑓 (𝑓𝑗 ),

∀𝑙 ∈ [1,… , |𝑓𝑗 .𝑡|],∀𝑚 ∈ [1,… , |𝑓𝑗 .𝑡|],

𝑟𝑛 = 𝐳(𝑓𝑗 ), 𝑟𝑜 = 𝐳(𝑓𝑘),
𝜖𝑎,𝑏 = 𝐮(𝑟𝑛, 1), 𝜖𝑣,𝑤 = 𝐮(𝑟𝑜, |𝑟𝑜|) ∶

𝑓 1
𝑗,𝑙 .𝜙 ≥ 𝑓 |𝑟𝑜|

𝑘,𝑚 .𝜙 +
𝑓𝑘.𝑐
𝜖𝑣,𝑤.𝑠

(14)

4.3. Objective function

The CP solver propagates the constraints all over the search space
and removes the unfeasible solutions (which do not satisfy the con-
straints) from the search space that results in the creation of the
solution space. Afterwards, the CP solver picks the first solution from
the solution space and determines the value of the objective function
for the solution. The CP solver searches for better solutions in terms of
the objective function until no such solutions can be found.

We define the objective function 𝛺 in Eq. (15). The terms 𝛩1 and
𝛩2 in the equation capture the analytical QoC and the extensibility,
respectively. The weight 𝛽 controls the trade-off between QoC and
extensibility towards finding a solution with either a better QoC or a
shorter response time for Fog applications. The weight 𝛽 is between 0 to
2, where a larger 𝛽 drives the search towards response time optimized
solutions.

𝛺 = 𝛩1 + 𝛽 × 𝛩−1
2 (15)

Analytical QoC CP model: In this work, we are interested in finding
the solutions which have better QoC (see [34] for more information
on the QoC and see [13,15] for more information on the schedule
optimization for the QoC). Since calculating the QoC needs a simulation
of the control application’s behaviour and the integration of QoC
calculation tools such as JitterTime in the CP model are not feasible due
to large runtimes, we have adapted the analytical QoC model proposed
in [13] and integrated it into our CP model.

The model formulates the QoC as: (i) minimum jitter for end-to-end
input–output flows, (ii) maximum delay between reception of the input
flow and transmission of the output flow, called task execution interval,
and (iii) minimum jitter for the task execution interval.

The analytical QoC CP model is formulated in Eq. (16), where 𝛾𝑖 is
a critical control application and the terms 𝜃1 captures the input flow
delay, 𝜃2 the output flow delay, 𝜃3 models the input flow jitter, 𝜃4 the
output flow jitter, and 𝜃5 the task execution interval jitter. The range
of all the 𝜃 terms is from 0 for no delay/jitter to 1 for a delay/jitter
equal to the control application’s period. The delay vs. jitter trade-off is
controlled by the weight 𝛽1 which can direct the search towards either
optimized delay or optimized jitter, concerning the type of the control
applications. A larger 𝛽1 value drives the search towards smaller jitter.
As proposed in [13], the 𝛽1 value is determined using JitterTime.

∀𝑓𝑗 ∈  𝑓
𝑡 (𝜏1),∀𝑓𝑘 ∈ 𝛾𝑖. ⧵  𝑓

𝑡 (𝜏1), 𝜏1 ∈ 𝛾𝑖.

∀𝑚, 𝑞 ∈ [1,… , |𝑓𝑗 |],∀𝑛, 𝑢 ∈ [1,… , |𝑓𝑘|],

𝑟𝑜 = 𝐳(𝑓𝑗 ), 𝑟𝑝 = 𝐳(𝑓𝑘) ∶

𝜃1 =
∑

𝑓 |𝑟𝑜|
𝑗,𝑚 .𝜙

𝑓𝑗 .𝑡
𝜃2 =

∑
𝑓𝑘.𝑡 − 𝑓 1

𝑘,𝑛.𝜙

𝑓𝑘.𝑡

3 =
∑

|𝑓 |𝑟𝑜|
𝑗,𝑚 .𝜙 − 𝑓 |𝑟𝑜|

𝑗,𝑞 .𝜙 + (𝑚 − 𝑞) × 𝑓𝑗 .𝑡|

𝑓𝑗 .𝑡

𝜃4 =
∑

|𝑓 1
𝑘,𝑛.𝜙 − 𝑓 1

𝑘,𝑢.𝜙 + (𝑛 − 𝑢) × 𝑓𝑘.𝑡|

𝑓𝑘.𝑡
=

8

5

∑
|𝑓

|𝑟𝑝|
𝑘,𝑚 .𝜙 − 𝑓

|𝑟𝑝|
𝑘,𝑞 .𝜙 + 𝑓 1

𝑗,𝑞 .𝜙 − 𝑓 1
𝑗,𝑚.𝜙 + (𝑚 − 𝑞) × 𝑓𝑗 .𝑡|

𝑓𝑗 .𝑡

𝛩1 = 𝜃1 + 𝜃2 + 𝛽1 × (𝜃3 + 𝜃4 + 𝜃5) (16)

Analytical extensibility CP model: This paper assumes using pe-
iodic slacks in the static task schedule for hosting Fog tasks and
uture critical control tasks; and periodic windows in queue gates for
ending Fog flows and future critical control flows. We are interested
n finding a distribution of the slacks and windows that provides a
horter response time for Fog applications and host a larger number
f critical control applications. There are different techniques in the
iterature for analysis and determining such a distribution of the slacks
nd windows [21,35–37].

The typical technique is to first, calculate the required capacity,
nd then, determine the slack and window distribution that uses the
east system resources and is able to provide the required capacity, at
ny time [38]. A common method for the calculation of the required
apacity is the ‘‘submission load technique’’ [39]. Thus, we define

general Load function (𝑡) in Eq. (17) for the required capacity
alculation at time 𝑡. In Eq. (17), the function 𝑢(𝑡− 𝑎) is a delayed unit
tep function, 𝑛 is the total number of tasks and flows in an application,
𝑘 is the arrival time of the tasks and the flows, and 𝑐𝑘 is the required

capacity, i.e., the task workload and the message transmission time.

(𝑡) =
𝑛
∑

𝑖=1

𝑖
∑

𝑘=1
𝑢(𝑡 − 𝑗𝑘) × 𝑐𝑘 (17)

There are also different techniques for calculating the reserved
resources in the real-time theory such as ‘‘server characteristic func-
tion’’ proposed in [37], ‘‘server supply function’’ proposed in [40], and
‘‘availability function’’ proposed in [21]. We define the ‘‘Availability
function’’ (𝑡) in Eq. (18), where the function 𝑟(𝑡− 𝑎) is a delayed unit
ramp function, 𝑆.𝑡 is the slack/window period, 𝑆.𝑐 is the slack/window
capacity, and the 𝑆𝑖.𝜙 is the offset of the 𝑖th slack/window slice. The
unit step and unit ramp functions are the most common functions in
math and definition of a function delay is very well-known in math.
Thus, there is no need to present their definition.

(𝑡) =
⌈

𝑡
𝑆.𝑡 ⌉
∑

𝑖=1
(𝑟(𝑡 − 𝛼1) − 𝑟(𝑡 − 𝛼2))

𝛼1 = 𝑗 × 𝑆.𝑡 + 𝑆𝑖.𝜙 𝛼2 = 𝛼1 + 𝑆.𝑐

(18)

Once the load function and the server availability function are
known, the response time 𝑅𝑒𝑠 can be calculated using Eq. (19) as
proposed in [21]. Eq. (19) can be solved using iterative procedure
starting at 𝑡 = 0 until 𝑅𝑒𝑠𝑛+1 and 𝑅𝑒𝑠𝑛 converge. As mentioned, for Fog
applications we focus on finding the solutions that provide a shorter
response time, and for future critical control applications solutions
that can host a larger number of applications without missing their
deadlines. Such an analysis can also be used for future critical control
applications as long as the determined response time is smaller than
the deadlines.

𝑅𝑒𝑠 = 𝑖𝑛𝑣((𝑅𝑒𝑠)) (19)

However, the presented analysis and design approach cannot be
employed at design-time since a prior knowledge on Fog applications
and future critical control applications is not available (they arrive
at runtime). To this end, we use the idea of the availability func-
tion in Eq. (18) and the extensibility metric presented in [41] to
define an analytic extensibility CP model in Eq. (20), where 𝑆.𝑡 is the
slack/window period, 𝑆.𝑐 is the slack/window capacity, and the 𝑆𝑖.𝜙 is
the offset of the 𝑖th slack/window slice. This analytic model calculates
the accumulated reserved resources within a hyperperiod, capturing the
distribution of the slack/window slices.

𝛩2 =
𝐧 × 𝑆.𝑐

2
× ((𝐧 + 1) × 𝑆.𝑡 − 𝑆.𝑐)

−
𝑛
∑

𝑆.𝑐 × 𝑆𝑗 .𝜙, 𝐧 = 𝐻 (20)
𝑖=1 𝑆.𝑡
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Fig. 7. Example server availability and load: The server 𝐷1 (blue curve) provides a
shorter response time comparing to the server 𝐷2 (red curve) for the known application
load (black curve). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

We give an example Fog task handling problem in Fig. 7 where the
black curve is the load function, the blue curve is the server 𝐷1 avail-
bility function, and the red curve is the server 𝐷2 availability function.

The load function is calculated for the application 𝛾 ′1 consisting of three
asks specified as 𝜏′1⟨1, 2⟩, 𝜏′2⟨2, 3⟩, and 𝜏′3⟨2.5, 9⟩. The servers 𝐷1⟨2, 4⟩
nd 𝐷2⟨4, 7⟩ have 7 and 4 server slices, respectively. For all slices of
erver 𝐷1 and server 𝐷2, the offsets are 𝐷𝑗

1.𝜙 = 0 and 𝐷𝑗
2.𝜙 = 3 ms.

We used the function in Eq. (19) to calculate the server’s response
ime for the given tasks. Although the server 𝐷2 has a higher utilization
57% comparing to 50% of the server 𝐷1), it provides a loner response
ime for all tasks which is 3.5 ms (comparing to 3 ms of the server 𝐷1).

Thus, the server 𝐷1 is a better choice as our proposed extensibility
P model approves. Our proposed extensibility CP model in Eq. (20)
alculates the extensibility values of 210 and 200 for servers 𝐷1 and 𝐷2,

respectively. As the example shows, our proposed analytic extensibility
CP model has successfully determined the best server configuration,
i.e., that provides the shorter response time.

4.4. Search strategy

In this work we used the Google OR-Tools [42] as the CP solver
which is configured to use a metaheuristic as the search strategy. A
search strategy specifies the order of selecting the decision variables
for assignment and the order of selecting the values from the domain
of a decision variable. The metaheuristic strategy does not guarantee
optimality, but it is effective in finding good quality solutions in a
reasonable time.

We used the same metaheuristic strategy as presented in [13,43]
based on a Tabu Search metaheuristic algorithm [44], which aims
to avoid the search process being trapped in a local optimum by
increasing diversification and intensification of the search. We apply
the metaheuristic strategy to all set of decision variables defined in
the CP model. In this strategy, once a task or flow is scheduled with
the respective minimum objective value, it is treated as keep variables
whose values should not be changed.

5. Evaluation

The benefits of Fog Computing in industrial automation have been
9

already evaluated via realistic demonstrator implementations [45,46].
In this section, we are interested in evaluating the ability of our design-
time tool to create extensible configurations that guarantee the safety
and real-time requirements for the critical control and support the
addition of dynamic Fog applications at runtime. The evaluation is done
using both a realistic use case and synthetic test cases, inspired from
realistic industrial applications. This section is structured as follows:
we first describe our evaluation setup and the test cases in Section 5.1.
Afterwards, we evaluate our proposed ECOS method for its ability
to support future critical control applications (Section 5.2) and to
accommodate Fog applications (Section 5.3). Finally, we evaluate the
performance of ECOS on a realistic test case where we consider scenar-
ios of upgrades with future critical control applications and migrations
of Fog applications (Section 5.5).

5.1. Test setup and scenarios

Our proposed ECOS approach is implemented in C# using Google
OR-Tools [42] as the CP solver and it is run on a computer with an
i9 CPU at 3.6 GHz and 128 GB of RAM. We limited the search in CP
solver for a duration of 15 to 120 min depending on the test case size
and the scenario. We assumed that all links have a speed of 1 Gbit/s.

We have generated ten synthetic test cases with critical control
applications that have progressively larger number of tasks and flows,
whose details are given in Table 1. The columns 2, 3, 4, 5 and 6 in
the table show the total number of critical control applications, tasks,
flows, ESs, and SWs for the test cases, respectively. Each critical con-
trol application implements a Linear–quadratic–Gaussian (LQG) control
function which is designed with Jitterbug [47] for controlling plants in
the form of Eq. (21) where 𝑎 and 𝑏 are randomly chosen respectively
from [50, 100, 150] and [100, 200, 300, 400] (see [15] for more details).

𝐺 = 𝑎
𝑠2 + 𝑏

(21)

The critical control flows are generated randomly with message
sizes to fit in single maximum transmission unit (MTU)-sized frames.
The tasks are also generated with random WCETs. Tasks and flows of
each critical control application have equal periods and deadlines in the
form of 2𝑛 ms, 𝑛 = {0, 1, 2, 3, 4}. The column 7 in the table shows the
mean utilization of critical control applications which is the average of
tasks’ CPU utilization and flows’ bandwidth utilization.

5.2. Supporting future control applications

We were first interested to evaluate the ability of ECOS to generate
configurations that allow updates, i.e., the addition of future critical
control applications with no changes to the current configuration. For
this purpose, we created for each test case in Table 1 a scenario where
critical control applications have to be added in the future. As depicted
in Table 2, columns 3 and 4 show for each scenario the total number
of tasks/flows, and mean utilization of the applications, respectively.

Together with ECOS, we evaluated a version, called ECOS/E that
does not optimize for extensibility, i.e., it does not consider the ex-
tensibility term 𝛩2 in the cost function 𝛺 and instead optimizes only
for QoC term 𝛩1. For the configurations obtained with ECOS and
ECOS/E on each test case, we used again ECOS to add the future
critical control applications for the respective test case, considering that
the configuration of the initial critical control applications cannot be
changed. This is to avoid re-certification, as discussed in Section 1.

Since an extensible configuration aims to support future critical
control applications, i.e., their tasks and flows have no missed dead-
lines, we show in columns 5 and 6 of Table 2 the percentage of
supported tasks and flows in ECOS and ECOS/E, respectively. The
conclusion is that ECOS can better support future critical control ap-
plications by considering the extensibility of the configurations during
their optimization. The main message is that without considering the
extensibility, i.e., using ECOS/E, none of the future upgrades can be

performed; all values in column 6 under are below 100%, showing
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Table 1
Details of ten critical control (CC) synthetic test cases.

# Total no. Total no. Total no. Total Total Mean util.
of CC of CC of CC no. of no. of of CC
apps tasks flows ESs SWs apps

1 5 17 11 3 1 34%
2 7 20 14 5 1 39%
3 10 24 18 7 2 42%
4 12 26 20 9 2 44%
5 15 28 25 11 2 48%
6 18 30 30 13 3 51%
7 20 34 34 15 3 53%
8 23 36 38 17 3 56%
9 27 40 45 19 4 59%
10 30 42 45 21 4 61%
Table 2
Evaluation results on synthetic test cases.

TCa Runtimeb Total no. of Mean util. of Percentage of RTd of Fog application 1 RTd of Fog application 2 RTd of Fog application 3
tasks/flows FCCAsc Supported Tasks: 16 Tasks: 21 Tasks: 35
in FCCAsc FCCAsc Flows: 15 Flows: 20 Flows: 38

# ECOS ECOS/E ECOS ECOS/E ECOS ECOS/E ECOS ECOS/E

1 3.18 36/58 57% 100% 78% 1.33 3.97 2.82 5.66 4.73 7.43
2 4.21 37/65 55% 100% 89% 1.42 1.91 2.75 4.92 6.74 9.56
3 6.88 30/20 50% 100% 96% 1.26 3.36 2.94 4.88 5.16 12.29
4 8.06 29/32 45% 100% 81% 2.17 3.27 3.64 5.65 5.18 7.34
5 9.73 33/40 44% 100% 96% 1.56 4.14 3.68 5.81 4.36 9.44
6 12.35 44/45 40% 100% 90% 1.47 2.96 3.14 4.17 4.96 5.82
7 13.92 37/35 39% 100% 83% 1.19 3.95 3.88 3.96 2.96 4.76
8 14.96 33/34 37% 100% 90% 2.18 2.93 3.14 5.84 2.84 9.64
9 16.38 25/28 31% 100% 98% 1.65 3.77 4.43 5.93 2.35 4.74
10 17.29 18/21 27% 100% 82% 2.37 3.79 4.82 5.97 2.85 6.68

Average 100% 87% 1.6 3.4 3.5 5.2 4.2 7.7

aTest Case.
bRuntime in seconds.
cFuture Critical Control Application.
dResponse time in ms.
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that the upgrades are not accommodated. As the results show, only
ECOS can add all the future critical control application. In some cases,
ECOS shows that it can support 23% more tasks and flows compared to
ECOS/E. Thus, ECOS shows a good performance in supporting future
control applications that avoids re-certification costs.

5.3. Response time analysis of fog applications

We were also interested to evaluate the ability of ECOS to accommo-
date Fog applications. Hence, we created for each test case in Table 1 a
scenario with three sets of Fog applications that will need to be hosted
by the FCP at the same time with the critical control applications.
Each set of Fog applications consists of different number of tasks and
flows with random arrival times, flow sizes, and task workloads. Their
details are presented in columns 7 to 12 of Table 2. We simulate their
migration to the FNs of the FCP considering the migration mechanism
from Section 2.1. Fog flows in Table 2 are Best Effort and are using the
SP traffic type, as discussed in Section 2.2.

Similar to the previous section, we evaluated ECOS against ECOS/E,
where extensibility has not been considered. Thus, as in the previous
section, we used ECOS and ECOS/E to generate optimized configura-
tions for each test case. As discussed in Section 3, we are interested to
host Fog applications with the shortest response times. ECOS uses the
extensibility terms 𝛩2 in the cost function 𝛺 to favour solutions that
re extensible, i.e., they have well-dimensioned servers and windows
or Fog applications.

Columns 7 to 12 in Table 2 report the mean response time of Fog
pplications under the respective configuration using the Eq. (19) in
s. As we can see from Table 2, by considering the extensibility when

reating the configurations at design-time, we are able to accommodate
og applications at runtime with reduced response times with an av-
10

rage 43%. In some test cases, such configurations generated by ECOS u
ould reduce the response time by 3.71 ms (see test case 3) and improve
he response time by 51% (see test case 1). When ECOS/E is used, we
an see that the response times for most Fog applications are much
arger. That is because although the total resources available to the Fog
pplications are the same in both the ECOS and ECOS/E configurations,
he deferrable servers and communication windows, which allocate the
vailable resources to Fog applications, are not well dimensioned in the
ase of ECOS/E, and hence cannot be used at runtime. This shows the
mportance of configuring for extensibility in the Fog.

.4. Runtime and complexity analysis

The problem addressed in this paper is interactable. ECOS, as a
ecision making solution, generates a configuration which consists of
eciding on the schedule tables, which has been proved to be Non-
eterministic Polynomial time (NP)–complete in the strong sense [32,
3]. Such solutions are exact optimization methods similar to Brunch
Bound, Cutting-plane, and Integer Linear Programming, which have

xponential efforts. The longer the method runs, the better is the
olution. However, ECOS can be asked to return a good quality solution
ithin a time limit, thanks to the search methodology we employ in the
oogle OR tools (see Section 4.4). The time limit is decided based on

he size of the problem such that finding a good solution is guaranteed.
We give the ECOS runtime for each test case in column 2 in Table 2.

he runtime is reported for generating design-time configurations for
ritical control applications. Fog applications are handled at runtime
sing a fixed-priority server which is a simple cycle-based scheduler
nd has a low complexity. As the results show, we are able to find a
ood solution in a short time comparing to the given time limit for all
est cases. In all test cases, the good solution is found in a less than 1%
f the given time limit. The runtime increases with the test case sizes
nd it is in an acceptable range, based on the discussion with potential

sers.
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Table 3
Fog-based pharmaceutical production line.

App Apps No of Bandwidth CPU
set Tasks/flows util. util.

Critical
control app

Agitator 6/5 0.7% 8%
Boiler 3/4 0.4% 7%
Chiller 5/7 0.7% 10%
Coater 9/13 1.1% 11%
Pulverizer 8/9 0.6% 12%
Tablet printer 14/15 1.2% 18%
Conveyor 15/21 1.5% 21

Future
critical
control apps

Heat exchanger 6/8 0.9% 11%
Sifters 9/10 1.1% 17%
Cartoners 7/10 0.8% 9%
Sealer 10/12 0.9 9%

Fog apps

Label check 5/8 NAa NAa

Machine maintenance 12/13 NAa NAa

Air quality check 15/12 NAa NAa

Stock check 8/4 NAa NAa

Safety check 8/14 NAa NAa

aNot Applicable.
.5. Extending with upgrades

The next question we were interested to answer is if this ability
f ECOS to accommodate Fog applications holds when we add future
ritical control applications. This scenario is adopted from industrial
ettings where upgrades in the form of future critical control ap-
lications are introduced while the ability of the FCP to host Fog
pplications are still needed. To this end, we present a realistic test
ase where a set of critical control applications as shown in Table 3 are
onsidered at design-time. The test case consists of 4 ESs and 6 SWs im-
lementing a pharmaceutical production line. We use ECOS to generate
n extensible FCP configuration at design-time for these applications.
n this configuration the mean utilization of critical control applications
s 47%, and the FCP is able to host Fog applications (see their details
n Table 3) with a response time of 3.6 ms.

Once a set of future critical control applications with a mean uti-
ization of 26% are introduced as an upgrade (see Table 3), we again
se ECOS to accommodate this upgrade. In the upgraded configuration,
he slack which has been diminished for hosting Fog applications, since
art of it has been assigned to run the future critical control applica-
ions. When adding these future control applications, ECOS has also
ptimized the new upgraded configuration for extensibility. As we can
ee, ECOS was able to update the configuration to still accommodate
he Fog applications in Table 3, at the cost of a small increase in
heir response times, i.e., 1.76 ms. Note that in practice these response
imes will be smaller, because the critical control tasks will not execute
or their WCET. Instead, they will finish earlier than WCET, and as
e discussed in Section 2.4, the servers will use at runtime the freed

omputational resources.

. Related work

There has been a lot of work in the literature for scheduling in
ixed-criticality systems and several methods have been proposed,

uch as hierarchical scheduling [48], task partitioning and schedul-
ng [49], container-based scheduling [50], and mixed traffic sched-
lers [51] for flows in particular. However, none of these works address
he problem of extensibility in mixed-criticality systems, which is the
ocus of this paper.

Designing for evolvability and extensibility in computer systems has
lso been addressed in the literature [52,53]. Extensibility is defined
s an ability that enables future upgrades and changes in computer
ystems [54]. These changes and upgrades can be implemented in
ifferent ways such as introducing new applications, migrating appli-
ations across processing nodes, and changes in required resources. An
xtensible system is designed in a way that accommodating changes
11
and upgrades does not require re-designing and costly changes in the
platform. Computer systems hosting safety-critical applications requires
safety certification and any changes in the system configurations re-
quires re-certification [55]. However, in this paper we focus on a form
of extensibility that is accommodating future applications, thus, an
extensible mixed-criticality that also hosts safety-critical applications,
does not require re-certification.

Pop et al. [56] propose an incremental scheduling algorithm for
embedded systems which aims at facilitating hard real-time appli-
cations implemented as tasks and adding specific future tasks. The
approach generates extensible schedules that can accommodate future
tasks without disturbing the existing tasks. This is realized using the
slack in the schedule. The approach in [36] uses extensibility to target
robust task scheduling in distributed systems. Any changes in the task
requirements are considered an extension. The proposed robust sched-
uler is able to support these changes using the dimensionend slacks
in the schedule. Zheng et al. [35] propose a mathematical modelling
approach for extensibility. In this work extensibility is in the form of
accommodating future tasks. This approach determines a distribution of
the slack among all tasks and targets all variations of future task sets.
A benefit of this approach is that no prior specification of future tasks
is required. None of these works consider the communication aspect,
which has a critical impact on extensibility, i.e., the computational
elements of a distributed system has to share a network.

We proposed in [41] an extensible scheduling algorithm for critical
applications in an FCP. The proposed algorithm employs a heuristic
approach that provides well-distributed slacks in the schedules of high-
critical applications, which can be used for scheduling future critical
applications. In the current work, we take the network into account
and consider the that the system uses TSN. The focus of previous work
mentioned so far was on hard real-time tasks. In addition, we also
consider realistic control tasks for which we take the QoC into account,
and dynamic Fog applications.

Yin et al. [50] propose a task scheduling algorithm that targets
extensibility by using resources in the Cloud. In this approach, tasks
are scheduled either on FNs or in the Cloud using containers. In this
method, the goal is to optimize the resource usage over the platform
and make use of all resources.

The work in the literature also addresses extensibility in the systems
hosting mixed-criticality network messages. [57] focuses on scheduling
network messages in TSN networks in automotive where dynamic
messages with less-criticality are needed to be scheduled with ones
of high criticality (e.g., control engine); and optimizing the schedules
to host more dynamic messages. Guo et al. [58] propose a method
for mapping task to the control units of an automotive use case tar-

geting extensibility. These tasks exchange messages in the automotive
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network. However, the works aim at increasing the number of future
messages hosted and do not consider optimizing the schedules for QoS
or QoC.

The authors in [59] propose an approach which decides the map-
ping of applications to the processing elements, separates the mixed-
criticality applications using partitioning, and schedules tasks and mes-
sages of the applications. This method aims for the extensible configu-
ration which allows adding future applications. Similarly, the approach
presented in [60], uses the worst-case response time analysis to de-
cide on the task allocation, the signal to message mapping, and the
assignment of priorities to tasks and messages. The approach optimizes
the decisions for accommodating future applications. Compared to
the related work, we propose an optimization approach for generat-
ing the extensible configurations at design time and mechanisms for
handling future applications at runtime, considering mixed-criticality
applications, such as hard real-time applications, control applications
for which we optimize their QoC and dynamic Fog applications for
which we optimize their QoS.

7. Conclusions

Fog Computing is an enabler for Industry 4.0 where mixed-
criticality applications are running on a shared computing platform.
The Fog Computing Platform (FCP) has to separate such applications to
protect high-criticality applications. The vision is to virtualize control
applications and run them as software tasks and transmit them as
network messages, while their safety, dependability, and performance
are guaranteed. We proposed a design-time static configuration of the
FCP. We considered on one hand, critical control applications that are
isolated and handled with a static design-time FCP configuration which
reserves resources for critical applications, and on the other hand, Fog
applications that are handled at runtime using pre-allocated resources.
These pre-allocated resources are determined in the FCP configuration
and their dimensions are optimized at design-time such that the FCP is
able to accommodate upgrades in the form of future critical control
applications, and dynamic changes in the form of Fog applications,
minimizing their response times comparing to the typical resource
reservation policies. We implemented an optimization approach using
Constraint Programming, a declarative programming paradigm where
realistic constraints can be added. We have evaluated our approach on
several test cases and demonstrated its ability to synthesize extensible
configurations.
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Appendix

See Table A.1.
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Table A.1
Summary of the notation.

Symbol Notation

 Architecture graph
𝜈𝑖 ∈  Architecture node
𝑁𝑖 ∈  Fog Node
𝑗 ∈ 𝑁𝑖 .𝐶 A core
𝑝𝑗 ∈ 𝜈𝑖 .𝑃 Egress port
𝑞𝑗 ∈ 𝑝𝑖 .𝑄 Priority queue
𝜖𝑖,𝑗 ∈  Link
𝜖𝑖,𝑗 .𝑠 Link speed
𝜖𝑖,𝑗 .𝑑 Link propagation delay
𝑟𝑖 ∈  Route
|𝑟𝑖| Number of links in a route
𝐻 Hyperperiod
𝑊𝑝𝑖 Periodic window
𝑊𝑝𝑖 .𝑐 Window capacity
𝑊𝑝𝑖 .𝑡 Window period
𝑊 𝑗

𝑝𝑖 .𝜙 Window slice offset
𝛾𝑖 ∈ 𝛤 Critical control application
𝜏𝑗 ∈ 𝛾𝑖 . Critical control task
𝜏𝑗 .𝑡 Critical control task period
𝜏𝑗 .𝑑 Critical control task deadline
𝜏𝑗 .𝑐 Critical control task WCET
𝜏𝑘𝑗 .𝜙 Critical control job offset
𝑓𝑗 ∈ 𝛾𝑖 . Critical control flow
𝑓𝑗 .𝑝 Critical control flow priority
𝑓𝑗 .𝑐 Critical control flow size
𝑓𝑗 .𝑡 Critical control flow period
𝑓𝑗 .𝑑 Critical control flow deadline
|𝑓𝑖| Number of critical control frames
𝑓 𝑘
𝑖,𝑚 .𝜙 Critical control frame offset

 The task mapping function to the fog nodes
𝛾 ′𝑖 ∈ 𝛤 ′ Fog application
𝜏′𝑗 ∈ 𝛾 ′𝑖 . Fog task
𝜏′𝑗 .𝑐 Fog task workload
𝜏′𝑗 .𝑗 Fog task arrival time
𝑓 ′
𝑗 ∈ 𝛾 ′𝑖 . Fog flow

𝑓 ′
𝑗 .𝑐 Fog flow size

𝑓 ′
𝑗 .𝑗 Fog flow arrival time

𝐷𝑖 Defferable server
𝐷𝑖 .𝑐 Server capacity
𝐷𝑖 .𝑡 Server period
𝐷𝑗

𝑖
.𝜙 Server slice offset
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