
Using JitterTime to Analyze Transient Performance

in Adaptive and Reconfigurable Control Systems

Anton Cervin
Department of Automatic Control

Lund University

Lund, Sweden

anton.cervin@control.lth.se

Mohammadreza Barzegaran
Department of Applied Mathematics and Computer Science

Technical University of Denmark

Kgs. Lyngby, Denmark

mohba@dtu.dk

Paolo Pazzaglia
Real-Time Systems Laboratory

Scuola Superiore Sant’Anna

Pisa, Italy

p.pazzaglia@santannapisa.it

Rouhollah Mahfouzi
Department of Computer and Information Science

Linköping University

Linköping, Sweden

rohollah.mahfoozi@liu.se

Abstract—This paper presents JITTERTIME, a small Matlab
toolbox for calculating the transient performance of a control
system in non-ideal timing scenarios. Such scenarios arise in
networked and embedded systems, where several applications
share a set of limited and varying resources. Technically, the
toolbox evaluates the time-varying state covariance of a mixed
continuous/discrete linear system driven by white noise. It also
integrates a quadratic cost function for the system. The passing of
time and the updating of the discrete-time systems are explicitly
managed by the user in a simulation run. Since the timing is
completely handled by the user, any complex timing scenario can
be analyzed, including adaptive scheduling and reconfiguration
between different system modes. Three examples of how the
toolbox can be used to evaluate the control performance of such
time-varying systems are given.

I. INTRODUCTION

Standard sampled-data control theory [1] assumes that mea-

surement samples are taken at a fixed rate, that there is a

constant delay between sampling and actuation, and that no

measurements or controls are lost. These assumptions may be

true as long as the controller is implemented as a single-task

application in a dedicated CPU. Modern platforms, however,

tend to be flexible, distributed, and reconfigurable, but at

the same time also multitasking, elastic, and unreliable to

some degree. For instance, control over 5G and the Cloud

[2] offers the possibility of coupling low-level control loops

with advanced learning algorithms, but wireless connections

are susceptible to intermittent disturbances, and a remote data

center may experience capacity dips during peak hours.

To understand the impact of the modern features described

above, new analysis and simulation tools are needed. There

is also a need to benchmark novel robust and adaptive con-

trol algorithms that can cope with time-varying computing

resources. This paper presents one such new tool: JITTER-

TIME is a Matlab-based toolbox for performance analysis

of time-varying cyberphysical systems. Combining elements

of both analysis and simulation, JITTERTIME models the

analog physical world and the digital filters/controllers as a

set of connected linear systems driven by white noise. This

allows the system performance for a given timing scenario,

as measured by a quadratic cost function, to be calculated

analytically. On the other hand, the timing of the execution

of the digital subsystems and possible system mode switches

must be carried out in a simulation. Using the tool it is possible

to analyze such issues as delay and jitter due to CPU and

network scheduling, lost samples or lost controls due to packet

loss or execution overruns, and aperiodic behavior due to mode

switches, transient failures, or unsynchronized network nodes.

The system model of JITTERTIME is largely inspired by

JITTERBUG [3]. Both JITTERBUG and JITTERTIME evaluate

a quadratic cost function for a mixed continuous-time/discrete-

time linear system driven by white noise. The main difference

is the timing model. In JITTERBUG, the timing of the discrete

systems are governed by random delays with specified prob-

ability density functions. This allows the total system to be

treated as a jump-linear system, and the stationary covariance

can be calculated by solving a set of linear equations. In

JITTERTIME, however, the timing is arbitrary and completely

driven by the user. This allows for more complex timing

scenarios to be analyzed, including scheduling algorithms with

long-term timing dependencies and asynchronous execution in

distributed control systems. For deterministic timing scenarios

over a finite horizon (or a repeating hyperperiod), the perfor-

mance is evaluated exactly. For stochastic timing scenarios,

however, Monte Carlo simulations can be needed to obtain

results with high confidence.

The timing simulation in JITTERTIME can be conducted in

a script or be driven by a discrete-event simulator, such as

the TRUETIME real-time control systems simulator [4]. The

advantage of JITTERTIME over a full TRUETIME simulation

is that the former does not require the process dynamics and

disturbances to be simulated, since the control performance

index is evaluated analytically.

978-1-7281-0303-7/19/$31.00 ©2019 IEEE 1025

S(z)C(z)A(z)

P (s)
yu

vc

Fig. 1. A simple JITTERTIME model of a control loop with a continuous-time
plant, P (s), disturbed by white noise, vc. The sampler, S(z), the controller,
C(z), and the actuator, A(z), can be executed at any points in time.

Outline

The rest of this paper is outlined as follows. The toolbox

is described in Section II, followed by some theoretical

background in Section III. Three use cases of the toolbox are

reported in sections IV to VI, followed by a discussion of

related work in Section VII and conclusions in Section VIII.

II. DESCRIPTION OF THE TOOLBOX

JITTERTIME1 consists of a small number of functions and

requires Matlab with the Control System Toolbox.

A. Creating JitterTime Models

A JITTERTIME model is created by adding and connecting

any number of continuous-time and discrete-time linear sys-

tems. Throughout, multiple inputs and outputs are allowed, and

a system may receive its inputs from several other systems.

All noise sources in the model are assumed independent.

Continuous-time systems must be strictly proper and can be

specified as state-space or transfer-function objects. Option-

ally, continuous-time white noise with a given intensity can

be added to the system. A quadratic cost function can also be

specified.

Discrete-time systems must be proper and can be specified

as state-space or transfer-function objects. Optionally, discrete-

time white noise with a given variance can be added to the

system. When the system is executed, its inputs are read

(sampled), noise is added, and its states and outputs are

updated. Between executions, all states and output signals are

held. A quadratic cost function can also be specified. Multiple

versions of the dynamics for same system can be specified to

allow for gain scheduling or other parametric behavior of the

discrete-time system during simulation.

An example of a simple JITTERTIME model is given

in Fig. 1. It models a sampled-data control loop with a

continuous-time plant, P (s), an ideal sampler, S(z) = 1, and

discrete-time controller, C(z), and zero-order hold actuator,

A(z) = 1. When the sampler executes, it reads the mea-

surement signal y. After executing both the controller and the

actuator, the control signal u is updated and fed back to the

plant. Assuming that the systems P , S, C and A and the noise

and cost parameters have already been specified, the lines of

code needed to construct the model are:

1JITTERTIME is freeware; documentation and the toolbox can be down-
loaded from http://www.control.lth.se/jittertime.

% Initialize JitterTime

N = jtInit;

% Add system 1 (P), input from system 4

N = jtAddContSys(N,1,P,4,R,Q);

% Add system 2 (S), input from system 1

N = jtAddDiscSys(N,2,S,1);

% Add system 3 (C), input from system 2

N = jtAddDiscSys(N,3,C,2);

% Add system 4 (A), input from system 3

N = jtAddDiscSys(N,4,A,3);

% Calculate the internal dynamics

N = jtCalcDynamics(N);

The variable N is a data structure that contains all the added

systems. Every system is identified by a unique number.

jtCalcDynamics checks that all system connections are

correct and creates a large state-space model of the total

system. Each continuous-time system requires n states, and

each discrete-time system requires n+p states, where n is the

system order and p is the number of system outputs.

B. Simulating a JitterTime Model

The model is simulated by repeated calls to the functions

jtPassTime and jtExecSys, in any order. jtPassTime

is used to simulate the passing of time and integrates the co-

variance of all continuous-time systems. It also accumulates

the cost of all systems. jtExecSys executes a given discrete-

time system, which is assumed to take zero time. An optional

argument can be used to control what version of the system

dynamics should be applied. In the following example, the

simple control loop model described above is simulated for

1000 periods of length T . The sampler executes at the start

of each period, while the controller and the actuator execute

after a random delay, uniformly distributed in [0, T].

for i = 1:1000

% Execute system 2 (S)

N = jtExecSys(N,2);

% Generate random delay

delay = rand*T;

% Pass time until control/actuation

N = jtPassTime(N,delay);

% Execute systems 3 and 4 (C and A)

N = jtExecSys(N,3);

N = jtExecSys(N,4);

% Pass time until end of period

N = jtPassTime(N,T-delay);

end

During a simulation, the internal model variables N.P, N.J,

and N.Tsim are updated after each call to jtPassTime

and jtExecSys. N.P contains the covariance matrix of all

the states in the model. N.J holds the accumulated cost, and

N.Tsim keeps track of the simulation time. All of these

variables are initialized to zero in jtCalcDynamics. N.J

and N.Tsim may be reset by the user at any time during a

simulation. This can be useful for, for example, skipping the

transient behavior at the start of a simulation.

C. Obtaining the Results

Depending on the purpose, the model variables N.P, N.J,

and N.Tsim can be logged by the user during a simulation

1026

and analyzed afterwards. If the purpose is to calculate the

average cost per time unit, this can simply be done as follows:

Javg = N.J / N.Tsim

Further details about the various commands of the toolbox

are available in the reference manual [5].

III. THEORY

JITTERTIME is based on well-known theory for linear

stochastic systems (e.g., [6]). The toolbox aids the user in

setting up a mixed continuous/discrete linear system model

driven by white noise and calculating the evolution of its total

state covariance. The calculations themselves are quite trivial.

At time zero, the state covariance P of the model is assumed

to be zero. Between events (i.e., executions of discrete-time

systems), the covariance evolves according to the matrix linear

differential equation

Ṗ (t) = AP (t) + P (t)AT +Rc,

where A describes the total continuous dynamics and Rc is

the intensity of the total continuous noise. All discrete system

states are kept constant by corresponding zeros in the A

matrix. When a discrete-time system k is executed at time

tk, the covariance is immediately updated according to

P (t+k) = EdkP (tk)E
T
dk +Rd,

where Edk describes the discrete state transition for system k

and its connection to other systems, while Rd is the variance

of the discrete noise. The increase in cost between two events

is given by

∆J =

∫ tk+1

tk

tr QcP (t) dt,

where Qc is the cost matrix for the total model.

At each call to jtPassTime, the continuous dynamics,

noise, and cost are internally sampled using the helper function

calcc2d from JITTERBUG (see [3] for details). Any finite-

dimensional linear system dynamics may be simulated, and

the tool does not check for stability. If the model is indeed

unstable, the state covariance P will grow unbounded.

A Simple Example

Consider the control loop in Fig. 1, where the process is

assumed to be an integrator driven by unit-intensity white

noise,

ẏ(t) = u(t) + vc(t). (1)

The control objective is to minimize the following cost func-

tion:

J(t) =

∫ t

0

y2(τ) dτ. (2)

Assuming periodic sampling with the interval T and zero delay

between sampling and actuation, the stationary minimum-

variance controller (see [1]) is given by the proportional

feedback

u(tk) = −
1

T

3 +
√
3

2 +
√
3
y(tk).

0 1 2 3 4 5 6
0

1

2

3

P
ro

ce
ss

 v
ar

ia
n

ce

0 1 2 3 4 5 6
0

2

4

6

A
cc

u
m

u
la

te
d

 c
o

st

Time (s)

Time (s)

Fig. 2. Simple example where the controller is activated at t = 3 s and then
executes once per second.

Setting T = 1 s and assuming the controller is activated

at t = 3 s, the process variance, P (t) = E y2(t), and the

accumulated cost, J(t), are calculated using JITTERTIME. The

variance and cost are logged every 0.1 s to show the inter-

sample behavior, and results are plotted in Fig. 2. It is seen

that the process variance grows linearly when the integrator

runs in open loop, as expected. When the controller is activated

at t = 3 s, the variance decreases and soon reaches a stable

periodic behavior. The average cost per time unit approaches

Javg = 3+
√
3

6
≈ 0.79, as predicted by the theory.

In the following three sections, some more complex exam-

ples of usage of the toolbox are presented.

IV. EXAMPLE 1: DEADLINE OVERRUN HANDLING IN

REAL-TIME CONTROL TASKS

In real-time embedded control systems, the computational

resources are limited and shared between many concurrent

tasks. Each real-time task, τ , is typically characterized by a

minimum inter-arrival time, T, a worst-case execution time,

E, and a relative deadline, D,, i.e., a maximum time limit

by which the task instance (job) should be completed [7]. A

scheduler is then used to arbitrate the execution of the tasks,

trying to complete all jobs before their deadlines. Often it is

assumed that D = T , so called implicit deadlines, and we will

assume that here as well.

In case of a temporary overload, it may happen that some

jobs are not completed by the deadline; we refer to this as a

deadline miss. Depending on the strategy implemented in the

real-time operating system, the job missing the deadline may

be terminated, thus not producing the output at all, or could

be allowed to continue execution and producing a late output,

but potentially impacting the next jobs. Three such overrun

handling methods were studied in [8], [9], see Fig. 3:

• Kill strategy: If a job misses its deadline it is immediately

terminated and no output is produced.

• Skip-next strategy: If a job misses its deadline, it is

allowed to continue executing but the next job is skipped,

i.e., it is not executed at all.

• Queue(1) strategy: A job that misses its deadline will

continue to execute until completion. Successive pending

1027

time
0 1 2 3

Kill

Skip-next

Queue(1)

• •

•

Fig. 3. Illustration of three different strategies to handle deadline misses in
Example 1. A red cross at the deadline marks a job that missed that deadline
(or a skipped job), while a green dot identifies a deadline hit.

jobs are appended to a queue with length 1 and executed

after the completion of the previous job. The queue stores

only the freshest pending job, and jobs that are removed

from the queue are not executed.

If the overrunning task in question is a control task, it is

clear that the overrun handling strategy can have a great impact

on the control performance. Kill means that no new control

signal is produced, while Skip-next and Queue(1) will delay

the output until the next period (or further). Understanding

exactly what the consequences will be is difficult, because

of the intricate interplay between the scheduling algorithm,

the overrun handling method, and the control loop. Here,

JITTERTIME can be used to analyze the precise effects under

various timing scenarios.

Following the system model of [9], we here consider a

physical plant P (s) and a control task implemented with

period T and implicit deadline D = T , implemented on a real-

time platform together with other concurrent tasks. A time-

triggered I/O unit, with the same period T and synchronously

released with the control task, manages the data exchange

between sensors, controller and actuators. At the starting

instant of each job, measurements from the sensors are copied

in the platform memory, and the control command stored in

the local memory is transmitted to the actuator. In nominal

conditions (no deadline misses) the control task works with a

fixed input-output delay equal to T . This means that even if the

job finishes its execution before the deadline, the transmission

of the control output is done only at the deadline instant. On

the other hand, if a job does not complete its execution at the

deadline instant, the actuator will be fed with the old value.

A JITTERTIME model of the above system setup is pre-

sented in Fig. 4. P (s) is the continuous-time plant dynamics,

IO(z)

S(z) CA(z)

P (s)
yu

y(tk) u(tk)

vc

Fig. 4. JITTERTIME model of a control loop in Example 1 with time-triggered
IO unit IO(z) and scheduling-driven sampler S(z) and controller/actuator
CA(z).

IO(z) = (0 1
1 0) represents the time-triggered IO unit, while

the controller is split into the two parts S(z) = 1 (reading the

input from the IO) and CA(z) (calculating the control signal

and writing the output to the IO). The model is constructed in

Matlab code as follows:

% Create JitterTime model

N = jtInit;

% Add plant system

N = jtAddContSys(N,1,P,2,R,Q);

% Add IO unit

N = jtAddDiscSys(N,2,IO,[1 4]);

% Controller input part

N = jtAddDiscSys(N,3,S,2);

% Controller calculation and output part

N = jtAddDiscSys(N,4,CA,3);

% Calculate the internal dynamics

N = jtCalcDynamics(N);

Experiments

To illustrate the analysis, we study a specific scenario, where

three periodic tasks should be executing on the same CPU

using fixed-priority scheduling. The task set is summarized in

Table I. The nominal execution time of each task is given in the

table, but each instance also randomly experiences prolonged

execution with 10% probability (Bernoulli distributed). The

execution time is extended by 0–100% (uniformly distributed)

in case of prolongation. This is a very crude model of the “tail”

of the execution time distributions, capturing such phenomena

as cache misses or unmodeled hardware interrupts.

Task τ3, which is the lowest-priority task, implements a

minimum-variance controller that should be used to regulate

the integrator process (1) with the cost function (2). The

controller is designed to compensate for a fixed input-output

delay of one sampling period. The controller task period, T3, is

left as a design parameter. Choosing a small sampling period

T3 can improve the disturbance rejection but at the same time

increases the risk of missed deadlines (and hence missing or

delayed outputs).

To investigate how the controller cost depends on the control

task period and the overrun handling method, the fixed-priority

scheduling algorithm is simulated using TRUETIME [4] and

the timing results of task τ3 (the controller) are fed into

JITTERTIME. (Since TRUETIME is also Matlab-based, it is

in fact possible to run the JITTERTIME analysis from within

TRUETIME as a co-simulation. The reader is referred to the

examples supplied with the JITTERBUG toolbox for further

details on how this can be implemented.)

A short example run with T3 = 120 ms and the Skip-next

strategy is shown in Fig. 5. The schedule reveals a large jitter

TABLE I
TASK PARAMETERS IN EXAMPLE 1.

Task Priority Period (ms) Nominal
exec. time (ms)

τ1 High 80 25
τ2 Middle 140 40
τ3 Low T3 30

1028

0 0.5 1 1.5 2 2.5 3 3.5 4

S
ch

ed
u

le

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

V
ar

ia
n

ce

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

C
o

st

τ1

τ2

τ3

IO

Time (s)

Fig. 5. Short simulation run of Example 1 with the controller period T3 =
120 ms and the Skip-next overrun strategy. The overruns at t = 1.8–2 s
(double) and t = 2.8 s (single) generate spikes in the process variance.

100 120 140 160 180 200 220 240 260 280 300
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Kill

Skip-next

Queue(1)

Controller period, T3 (ms)

A
v
er

ag
e

co
n

tr
o

l
p

er
fo

rm
an

ce
,
J
a
v
g

Fig. 6. Choice of controller period in Example 1. A task period of T3 =
140 ms and the Kill strategy is the best design combination in this case.

for τ3 due to the preemption from the two higher-priority tasks.

Each overrun is visible as a transient increase in the variance

of the controlled process, which in turn yields an increased

accumulated cost.

To find the best controller period, T3 is varied between

100 ms and 300 ms in steps of 10 ms. In each case, the

scheduling algorithm and the JITTERTIME model are simu-

lated for Tsim = 1000 time units, and the average controller

cost is recorded. The performance results are reported in

Fig. 6. It is seen that the Kill strategy seems to work the

best overall, although it can be sensitive to multiple missed

deadlines in a row. The Skip-next strategy is better at handling

more severe overload, e.g., when T3 = 100 ms in this example.

The Queue(1) strategy performs the worst, since a missed

deadline often leads to subsequent ones also being missed.

V. EXAMPLE 2: SCHEDULE OPTIMIZATION FOR CONTROL

APPLICATIONS ON FOG PLATFORM

Fog computing is envisioned as an architectural means to

realize the convergence of information technology and opera-

tion technology [10]. According to the OpenFog consortium,

fog computing is a “system-level architecture that distributes

resources and services of computing, storage, control and

networking anywhere along the continuum from Cloud to

Things”. Fog computing brings computing and deterministic

communication closer to the edge of the network. Also, it

virtualizes and integrates equipment such as programmable

logic controllers and industrial PCs, which are used to run

control applications.

A Fog node, being the main component of fog computing

platform (FCP), has some computational resources, which are

used for execution of applications with different criticality

levels. The fog nodes should be configured such that not only

functional but also extra-functional properties of applications

are guaranteed. From a control perspective, the way the FCP

is configured has an impact on the control performance of the

control applications. This is especially true for the scheduling

design.

In this example, we want to show the importance of proper

schedule optimization on the FCP. Since control applications

are executed alongside non-control applications, the schedul-

ing algorithm should consider the extra-functional properties

of the controllers, i.e., the performance of the associated

control loop. The example is inspired by [11], where a

quality-of-control aware algorithm for static scheduling of

controllers alongside non-controllers on a FCP is proposed.

The algorithm is based on a simulated annealing metaheuristic,

which changes the parameters of the previous solution and

finds a better one. Deadlines, offsets and activation times are

the properties that the algorithm uses to find a solution. The

algorithm determines the mapping of tasks to the cores as well

as a static cyclic schedule for each core.

A starting point for the scheduling optimization is obtained

by simulating all tasks using the earliest-deadline-first pol-

icy [7]. The scheduling algorithm then uses a cost function

V to evaluate the current solution and for comparison with

other solutions. Assuming a mix of control and non-control

applications, the cost function can be written in the form

V =

n∑
i=1

D(hi) +

m∑
j=1

(E(Aj) +O(Aj)) +

l∑
k=1

J(Bk),

where the cost term D checks for deadline violations in the

subtasks h, E is the end-to-end response of a given application

Aj , and O checks the order of execution of subtasks in a given

application. These cost terms place a large penalty on the cost

function V if there are any violations. Finally J represents

the control performance of a given control application Bk,

evaluated using JITTERTIME.

As an example, we assume that an inverted pendulum

process

P (s) =
200

s2 + 400

should be controlled via the fog computing platform. An LQG

controller with period T = 12 ms has been designed using

JITTERBUG [3]. A summary of all the applications that should

be scheduled on the FCP are given in Table. II. They are

1029

Configuration 1

Configuration 2

Fig. 7. Schedule configurations in Example 2. Only the first 39 ms out of the 60 ms long hyperperiod are shown.

TABLE II
CONTROL AND NON-CONTROL APPLICATIONS IN EXAMPLE 2.

Application Type Subtasks Exec. time (µs) Period (ms)

1 Ctrl 1 1000 12
2 2500 12
3 1000 12

2 Non-ctrl 4 500 12
3 Non-ctrl 5 1000 6

6 500 10
4 Non-ctrl 7 750 10

8 750 10
9 1000 12

both control applications and non-control applications. Each

application has number of subtasks and each subtask has a

fixed execution time and a period. The control application

consists of three subtasks: h1 is the sensor task, h2 is the

control calculation task and h3 is the actuation task.

During the simulated annealing execution, a large set of

schedule configurations are evaluated, and for each case the

controller cost J(Bk) is evaluated using JITTERTIME. Two

schedule tables generated by the scheduling algorithms in [11]

are shown in Fig. 7. Configuration 1 represents a case where

the tasks are scheduled with regards only to their deadlines,

while Configuration 2 has focus on a short input-output delay

on average and elimination of jitter of control tasks. We ana-

lyzed the schedule tables with JITTERTIME using the simple

model given in Fig. 1. The subtasks have a hyperperiod of

60 ms. During each hyperperiod, the execution is completely

deterministic, and the control cost can be evaluated exactly

using JITTERTIME.

The resulting accumulated cost over a total simulation run

equivalent to 10 times the hyperperiod for both configurations

are shown in Fig. 8. Even though all deadlines are met in both

configurations, it is seen that Configuration 2 has better control

performance (smaller cost). For this application, a short input-

output delay and small jitter are both critical for providing

good performance. Hence, this solution will be preferred by

the optimization algorithm.

VI. EXAMPLE 3: ROUTING AND SCHEDULING FOR

REAL-TIME CONTROL APPLICATIONS ON ETHERNET

The problem of synthesizing network routing and schedul-

ing for real-time control applications on time-triggered Eth-

ernet networks has been studied in recent years [12]–[14].

Researchers have investigated various design-space explo-

ration problems to synthesize Ethernet schedules and routes

in the context of hard deadlines and worst-case latencies. The

provided static route and schedule in these models result in

0 1 2 3 4 5 6
0

2

4

6

8

10

12
Configuration 1

Configuration 2

Time

A
cc

u
m

u
la

te
d

C
o

st

Fig. 8. Evolution of cost for the two different configurations in Example 2.

varying delays in different periods of a control application.

Mahfouzi et al. [14] showed that considering only deadlines in

providing route and schedule yields non-ideal timing scenarios

that could potentially lead to instability of control applications.

The authors used the jitter margin analysis from [15] to take

into consideration average delay and jitter in providing route

and schedule. In this example we show that JitterTime provides

much less pessimistic results when the actual schedules are

known. We consider 20 concurrent control applications that

are randomly selected from a process database with inverted

pendulums, ball and beam processes, DC servos, and harmonic

oscillators, represented by the following transfer functions:

P1(s) =
9

s(s+ 1)
P2(s) =

19.6

(s− 4.43)(s+ 4.43)

P3(s) =
3

s2
P4(s) =

9.81

(s− 3.13)(s+ 3.13)

P5(s) =
3

s2 + 3

These plants are considered to be representative of realistic

control applications and are extensively used for experimental

evaluation in the literature [1]. For each plant, an LQG

controller with a given period is synthesized.

We assume that the sensors are connected through a network

of 8 Ethernet TSN switches to the controllers. (See Fig. 9 for

an illustration). For each control application, at the beginning

of each period, the sensor samples data and sends it to its con-

nected switch. The sampled data is served as a Time-Triggered

message in the switches. Therefore, the static schedule for

each message is determined using the timed gates described in

1030

Fig. 9. Topology of Ethernet TSN network in Example 3.

TABLE III
ANALYSIS OF STABILITY AND PERFORMANCE IN EXAMPLE 3.

Application Process Guaranteed Worst-case JitterTime
stability [15] cost [17] exact cost

1 P1 Yes 1.318 1.039
2 P2 Yes 1.005 1.002
3 P3 Yes 1.024 1.002
4 P4 No 6.337 1.157
5 P5 Yes 1.136 1.008
6 P3 Yes 1.157 1.011
7 P4 Yes 1.187 1.024
8 P3 Yes 1.027 1.001
9 P4 No 29.95 1.206

10 P4 No ∞ 1.321
11 P2 No 1.444 1.041
12 P1 Yes 1.001 1.001
13 P3 Yes 1.475 1.034
14 P4 Yes 1.241 1.025
15 P3 Yes 1.501 1.034
16 P4 No 1.824 1.097
17 P1 No 39.638 1.294
18 P5 Yes 1.174 1.010
19 P4 No ∞ 4.835
20 P2 No ∞ ∞

IEEE TSN standard [16]. The routing of each message is also

determined by the look-up tables in the Forwarding Engine

of each switch. As a result, the sampled messages from each

sensor are directed to the corresponding controller according to

the static route and schedule that is hard-coded in the switches.

The static route and schedule is decided according to several

constraints that comes from the characteristics of the switched

fabric and the real-time constraints of the controllers, e.g.

period and deadline. From the static routing and scheduling

framework we extract the end-to-end delays in each period of

all 20 control applications. The end-to-end delay and the jitter

in turn determine the control performance of each loop.

Using the delay data from one optimization run, we in-

vestigate the stability and performance of each control loop

using three different analysis tools. The results are reported in

Table III. All cost values have been normalized with respect to

the cost under ideal circumstances (minimum delay and zero

jitter). For 8 out of the 20 control loops, stability cannot be

guaranteed using Kao and Lincoln’s jitter margin analysis [15].

This simple stability criterion is however only sufficient and

can be very conservative. A more detailed performance and

stability analysis was proposed in [17], which also enabled

the computation of an upper bound of the worst-case relative

performance degradation due to jitter. A value smaller than

∞ means that the loop is stable. With this tool, stability

can be guaranteed for 17 of the loops. Finally we apply the

JITTERTIME analysis to each control loop and compute the

exact value for the relative performance degradation due to

jitter given the entire distributed system schedule over the

hyperperiod. We can now conclude that all loops are indeed

stable except the last one (which is indeed unstable even for

zero jitter), and the performance degradation is very modest in

most cases. In the example we have seen that, by analyzing a

particular timing scenario, we can get more detailed answers

with regard to both stability and performance.

VII. RELATED WORK

The linear stochastic state-space analysis utilized in the

toolbox hails back to Kalman’s seminal work on optimal

filtering [18]. Further background on stochastic filtering and

control processes can be found in, e.g., [6], [19]. Linear

covariance analysis for time-varying systems has frequently

been applied in the field of space navigation, see, e.g., [20].

Co-simulation of real-time/embedded/networked control

systems has been an active research topic for the past

twenty years. Often the simulators have been implemented

as Simulink libraries to allow integration with already ex-

isting plant and control system models. The aforementioned

TrueTime simulator [4] has a focus on task scheduling but

also includes simple models of wired and wireless networks.

PiccSim [21] allows detailed wireless network models (using

ns-2) to be co-simulated with the feedback control system. T-

Res [22] is another recent tool that focuses on the scheduling

of shared resources in embedded systems. JITTERTIME can

be coupled to each of the simulators mentioned above, or to

a pure discrete-event simulator such as SimEvents [23].

It is well known that direct covariance calculations as per-

formed in the toolbox are not numerically robust for systems

of very large dimension; there it is better to use a square-

root representation or UD factorization [19]. This will be

implemented in a future version of the toolbox.

VIII. CONCLUSION

Real-time control systems implemented on top of modern

computing platforms are very complex systems. In this paper

we have presented the toolbox JITTERTIME, which facilitates

fast analysis of simple linear control systems under arbitrarily

complex timing patterns. The analysis is fast enough to be

used for instance within a larger optimization framework for

synthesis of distributed real-time control systems. As always,

there is a balance between the analytical power of a tool

and its generality and applicability. A detailed full-system

simulator such as TRUETIME [4] can arbitrarily complex

process and timing models but does not give any performance

guarantees. A purely analytical tool such as the jitter margin

[15] can give stability guarantees but is very limited in its

modeling capabilities. JITTERTIME strikes a middle path by

joining linear stochastic systems analysis and arbitrary timing

simulation. Three different examples of how the toolbox can

be used in the analysis and design of complex real-time control

1031

systems were given. Further examples of how the toolbox can

be used are found in the reference manual [5].

ACKNOWLEDGMENTS

A. Cervin and R. Mahfouzi are part of the ELLIIT Excel-

lence Center at Linköping–Lund in Information Technology.

A. Cervin and M. Barzegaran are part of the Nordic Hub on

Industrial IoT, funded by NordForsk. The work was partially

supported by the European Union Horizon 2020 research

and innovation programme under the Marie Skłodowska-Curie

grant No. 764785, FORA–Fog Computing for Robotics and

Industrial Automation.

REFERENCES

[1] K. J. Åström and B. Wittenmark, Computer-Controlled Systems (3rd

Ed.). Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1997.

[2] P. Skarin, W. Tärneberg, K.-E. Årzén, and M. Kihl, “Towards mission-
critical control at the Edge and over 5G,” in IEEE International

Conference on Edge Computing (EDGE), July 2018.

[3] B. Lincoln and A. Cervin, “Jitterbug: A tool for analysis of real-time
control performance,” in Proc. 41st IEEE Conference on Decision and

Control, Las Vegas, NV, 2002.

[4] D. Henriksson, A. Cervin, and K.-E. Årzén, “TrueTime: Simulation of
control loops under shared computer resources,” in Proceedings of the

15th IFAC World Congress on Automatic Control, Barcelona, Spain, Jul.
2002.

[5] A. Cervin, “JitterTime 1.0—Reference manual,” Department of Auto-
matic Control, Lund University, Sweden, Tech. Rep. TFRT-7658, 2019.

[6] K. J. Åström, Introduction to Stochastic Control Theory. New York:
Academic Press, 1970.

[7] G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable

Scheduling Algorithms and Applications, 3rd ed. Springer Publishing
Company, Inc., 2011.

[8] A. Cervin, “Analysis of overrun strategies in periodic control tasks,” in
16th IFAC World Congress, 2005.

[9] P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin, “DMAC:
Deadline-miss-aware control,” in 31st Euromicro Conference on Real-

Time Systems (ECRTS 2019), Stuttgart, Germany, 2019.

[10] W. Steiner and S. Poledna, “Fog computing as enabler for the industrial
internet of things,” Elektrotechnik Und Informationstechnik, vol. 133,
no. 7, pp. 1–5, 2016.

[11] M. Barzegran, A. Cervin, and P. Pop, “Towards quality-of-control-aware
scheduling of industrial applications on fog computing platforms,” in
Workshop on Fog Computing and the IoT (IoT-Fog19). ACM, 2019.

[12] D. Tămaş-Selicean, P. Pop, and W. Steiner, “Design optimization of
TTEthernet-based distributed real-time systems,” Real-Time Systems,
vol. 51, no. 1, pp. 1–35, 2015.

[13] E. Schweissguth, P. Danielis, D. Timmermann, H. Parzyjegla, and
G. Mühl, “ILP-based joint routing and scheduling for time-triggered
networks,” in Proceedings of the 25th International Conference on Real-

Time Networks and Systems. ACM, 2017, pp. 8–17.
[14] R. Mahfouzi, A. Aminifar, S. Samii, A. Rezine, P. Eles, and Z. Peng,

“Stability-aware integrated routing and scheduling for control appli-
cations in ethernet networks,” in 2018 Design, Automation & Test in

Europe Conference & Exhibition (DATE). IEEE, 2018, pp. 682–687.
[15] C.-Y. Kao and B. Lincoln, “Simple stability criteria for systems with

time-varying delays,” Automatica, vol. 40, no. 8, pp. 1429–1434, 2004.
[16] LAN/MAN Standards Committee of the IEEE Computer Society, IEEE

Standard for Local and Metropolitan Area Networks – Bridges and

Bridged Networks Amendment 25 : Enhancements for Scheduled Traffic,

IEEE Std. 802.1Qbv-2015, 2015.
[17] A. Cervin, “Stability and worst-case performance analysis of sampled-

data control systems with input and output jitter,” in 2012 American

Control Conference (ACC). IEEE, 2012, pp. 3760–3765.
[18] R. E. Kalman, “A new approach to linear filtering and prediction

problems,” Transaction of the ASME-Journal of Basic Engineering, pp.
35–45, March 1960.

[19] T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation. New Jersey:
Prentice Hall, 2000.

[20] N. B. Stastny and D. K. Geller, “Autonomous optical navigation at
Jupiter: A linear covariance analysis,” Journal of Spacecraft and Rockets,
vol. 45, no. 2, pp. 290–298, 2008.

[21] T. Kohtamaki, M. Pohjola, J. Brand, and L. M. Eriksson, “PiccSIM
Toolchain: Design, simulation and automatic implementation of wire-
less networked control systems,” in 2009 International Conference on

Networking, Sensing and Control, March 2009, pp. 49–54.
[22] F. Cremona, M. Morelli, and M. Di Natale, “TRES: A modular rep-

resentation of schedulers, tasks, and messages to control simulations
in Simulink,” in Proceedings of the 30th Annual ACM Symposium on

Applied Computing, 2015, pp. 1940–1947.
[23] M. Clune, P. Mosterman, and C. Cassandras, “Discrete event and

hybrid system simulation with SimEvents,” in Proceedings of the 8th

international workshop on discrete event systems, 2006, pp. 386–387.

1032

Powered by TCPDF (www.tcpdf.org)

